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ABSTRACT 

There are many factors which make virtual environment (VE) systems particularly 
useful for training applications. Not only can VE systems be easily reconfigured to 
simulate different real situations, but they can be used to create situations that could not 
exist in the real world but nonetheless are exceptionally effective in training. Within the 
general training area, work in this thesis focuses on training directed towards the 
acquisition of spatial knowledge. There are many cases in which spatial knowledge cannot 
be acquired in the actual environment, and the training must be accomplished by other 
means using a VE. A critical factor contributing to the acquisition of spatial knowledge is 
the method employed for moving around within the VE. Some methods of movement do 
not provide the user with any easily sensed measure of the amount of effort or work that 
would be associated with the movement in the real world. 

This thesis concentrates on the development of an interface that enables the user to 
"finger walk" through a VE. This interface makes use of a low friction pad that allows the 
user to finger walk "in place" and an electric field sensing system that monitors the position 
of the fingers on the pad. The user interface designed effectively tracks the user's 
movement along the surface of the pad for input into a VE. 
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1 Introduction 

Virtual environments are receiving attention by experts in many fields, including, 

Computer Science, Electrical Engineering, Mechanical Engineering, Psychology, 

Architecture, and Medicine. In a virtual environment system, a human interacts with a 

computer-generated environment via a human-machine interface. The interface contains 

devices that display computer generated information to the human user (displays) and 

devices that sense the state of the user and are used to control the actions of the computer 

(controls). Display devices may address any sensory modality. For example, there are 

visual displays (e.g., monitors), auditory displays (e.g., earphones), and tactile displays 

(e.g., vibratory arrays). Similarly, control devices may sense various types of motor 

activities (e.g., joysticks or data gloves to sense manual actions or speech recognition 

systems to sense articulatory output) or neural activities (e.g., electrodes to sense brain- 

wave activity). 

In contrast to teleoperator systems, the purpose of which is to enhance the human 

operator's ability to sense, travel through, or modify the real world, "the purpose of 

virtual-environment systems is to sense, manipulate, and transform the state of the human 

operator (as in training or scientific visualization) or to modify the state of the information 

stored in the computer (e.g., the virtual environment or some theoretical model represented 

in the computer software)" (Durlach and Mavor, 1995, p. 19). Depending on the desired 

application, a virtual environment might closely approximate reality or create an imaginary 

world that differs radically from the real world. 

The definition of a virtual environment system and the relation of virtual 

environment systems to classical simulators and teleoperator systems are discussed in detail 



in Durlach and Mavor (1995). Potential application areas include manufacturing, 

information visualization, health care, teletravel, marketing, entertainment, and training. 

This thesis is focused on training applications. 

There are many factors which make virtual environment systems particularly useful 

for training applications. Advantages in the areas of cost and safety are well illustrated by 

the past and present use of simulation in the training of individuals to pilot airplanes, drive 

land vehicles, or handle ships and submarines. Such advantages are also becoming 

increasingly evident in the training of maintenance personnel and medical staff (e.g., 

surgeons). In addition to the advantages of decreased cost and increased safety, virtual- 

environment systems provide great flexibility in changing the training paradigm. Not only 

can these systems be easily reconfigured to simulate different real situations, but they can 

be used to create situations that could not exist in the real world but nevertheless are 

exceptionally effective in training (e.g., by unrealistically emphasizing certain training goals 

or by continuously adapting the training environment to the state of the individual user). 

Within the general training area, work in this thesis focuses on training directed 

towards the acquisition of spatial knowledge. There are many cases in which spatial 

knowledge cannot be acquired in the actual environment (i.e. military special forces often 

do not have access to the space in which they must carry out their mission), and the training 

must be accomplished by other means using a virtual environment. 

This thesis concentrates on the development of an interface that enables the user to 

"finger walk" through a virtual environment. This interface will make use of a slippery pad 

that allows the user to finger walk "in place" and a sensing system that monitors the 

position of the fingers on the pad. 
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The potential benefits of this work are twofold. First, it is possible that many of the 

expected advantages of a walking interface can be realized in a more cost-effective manner 

by means of a scaled-down, finger-walking interface. Secondly, even if this is not the 

case, experience gained in developing the slippery-pad, finger-walking interface may be 

useful for later work on a slippery-floor walking interface. 

The goal of this thesis is to describe the design of an inexpensive method of 

navigation which simulates walking within a virtual environment. Chapter 2 further 

documents some of the goals of this project, such as the use of virtual environments for 

training spatial knowledge acquisition. In addition, this chapter also discusses several 

previous input devices and their evolution towards methods which use the effort expended 

by users to increase their presence in the virtual environment. Chapter 3 describes many of 

the possible methods commonly used to track the motion for input devices. Chapter 4 

details the concept of Electric Field Sensing as a method to quickly and accurately track the 

motion of a user. Chapter 5 details a performance study involving receiver and transmitter 

design and implementation. Chapter 6 discusses different methods of determining the 

position of the user's fingers on the surface of the pad. Chapter 7 details the methods used 

to determine the magnitude and direction of the user's movement through the virtual 

environment. Chapter 8 describes the actual design of a finger walker, including both the 

hardware and software required. Chapter 9 details the development of a graphical user 

interface (GUI) to test the benefits of the finger walking user interface developed in chapter 

8. Finally, chapter 10 concludes with a discussion of the results of tests on the finger 

walker interface, including a discussion of its possible expansion to a full-scale walking 

input device. 
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2 Background/Concepts 

The following subsections briefly explain some of the concepts and past 

experiments which have lead to the concept of a finger walking interface. The concepts of 

spatial knowledge acquisition, presence and distance estimation, and work in virtual 

environments are discussed in subsections 2.1, 2.3, and 2.4, while subsection 2.2 gives an 

overview of interfaces in general, including several devices directly related to a finger- 

walking interface. 

2.1 Spatial Knowledge Acquisition 

Within the general training area, work in this thesis focuses on training directed 

towards the acquisition of spatial knowledge. There are two types of spatial knowledge: 

route following and configurational knowledge. Typically, route following refers to a 

person's ability to move from one location to another by following a specific path. Often 

the person navigating along the path has no knowledge of any alternate path or even 

perhaps of how to traverse the path in reverse. On the other hand, configurational 

knowledge refers to a person's knowledge concerning the structural layout of the whole 

environment. In general, an individual with good configurational knowledge is capable of 

route following and of determining alternate routes between any two points. 

One critical component of training spatial knowledge using a virtual environment 

system concerns the method employed for moving around within the VE. The easiest and 

most common methods of movement within VEs is accomplished through the use of hand 

movements. By simply moving a joystick in a certain direction or a data glove into a 
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certain posture, the user instructs the computer program that he wishes to move in a 

particular direction within the virtual environment. These methods are inexpensive and 

easy to incorporate into a virtual environment. However, they differ from normal 

locomotion (i.e., walking) in a number of ways. In particular, they do not provide the user 

with any easily sensed measure of the amount of effort or work that would be associated 

with the movement in the real world. For example, in the real world, a person walking 

through a room acquires certain spatial knowledge (e.g., related to the room's length) from 

the effort exerted in walking through the room. However, this spatial knowledge is lost 

when using a joystick or data glove to move through the virtual room because the 

mechanical work associated with the manual action is not related to the work involved in 

actually walking through the room. By creating a method for movement through a virtual 

environment which simulates the work involved in walking in the real world, users may 

gain a better feel for the distance they have traveled in the virtual environment. 

2.2 Locomotion Interfaces 

In general, mobility, locomotion, or walking interfaces are needed for many tasks 

other than training spatial knowledge. A recent review of some of the interfaces of this 

type that have been developed is available in Jacobsen et al (1998). Most of these 

interfaces, such as the omnidirectional treadmill, not only suffer from a variety of 

performance deficiencies, but are very complex, bulky, and expensive. The following 

paragraphs comment briefly on some previously documented results on locomotion 

interfaces that are particularly relevant to the proposed work. 

13 



Griplüc« Computer K) 
ÄS-232C 

Video 
Camera 

I/O Computer 

A/D 

PIO 

GonidheKt 

Figure 1: Hardware configuration of Iwata's Haptic Walkthrough 
Simulator. 

Iwata and his associates at the University of Tsukuba in Japan (Iwata, 1992; Iwata 

and Matsuda, 1992; and Iwata and Fujii, 1996) have performed research relating to 

interfaces which require the user to walk in place in the real world in order to move through 

the VE. In one very complex system (Iwata, 1992, Iwata and Matsuda, 1992; see figure 

I), the walker was outfitted with specially designed roller skates that enable motion in two 

dimensions, a harness that fixed the trunk of the walker relative to the overall framework of 

the system, ultrasonic sensors that measure the positions of the feet and head, a cable 

system attached to the skates to provide force feedback to the feet, a head mounted display 

(HMD) to provide visual images, and a 6 degree of freedom haptic force feedback device 

for the hand. In the experiments performed, subjects were required to estimate distances 

traversed within the VE in two cases: (1) moving through the VE by means of the walking 

interface and (2) moving through the VE by means of hand-gesture-controlled flying. 
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Although these experiments appear to have been performed very crudely, and the 

results of these experiments are described very briefly, they do suggest that the walking 

interface led to less response bias than the hand-controlled-flying interface. In other 

words, test subjects who walked through the test space had a better knowledge of the 

distance traveled in the VE than subjects flying through the VE. More specifically, the 

underestimation of distance that appeared for the larger distances was less pronounced 

when the walking interface was used. No results were presented on resolution in the 

distance estimation task, only on bias. 

In a later prototype developed by Iwata and Fujii (Iwata and Fujii, 1996; see figure 

2), the roller skates were replaced by sandals with a low friction film on the sole (together 

with a break pad), the support harness was replaced by a hoop around the waist, and the 

Figure 2: Hardware configuration of Iwata's Virtual Perambulator. 
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ultrasonic sensors were replaced by Polhemus FASTRACK magnetic sensors. Also, touch 

sensors were incorporated in the soles of the sandals in order to signal the foot steps of the 

user to the computer. 

Reported tests of this system consisted of observing the extent to which novice 

users (at SIGGRAPH) were able to walk and turn using this system. According to 

relatively crude criteria, the results were successful. Test subjects were able to adapt 

quickly to the new device (94% of the subjects tested were able to adapt to the walking 

device) walking through the VE, turning, and even running (8% of the subjects tested were 

able to run in the device). 

James Templeman and his colleagues at the Naval Research Lab developed a 

motion platform, the Gaiter, which allows users to travel through virtual environments by 

taking virtual steps (Templeman, 1998). This locomotion interface, consisting of position 

trackers (such as a Polhemus system) attached to the knees and pressure sensors attached 

under the ball and heel of each foot, monitor the human gait. By rocking his knees in 

different patters, the user can control his virtual motion. For example, by rocking his 

knees forward then back, the user moves forward through the virtual environment. Thus, 

the users hands are completely free from the walking interface, allowing them to be used 

for other tasks. 

Though the Gaiter system has yet to be carefully tested, it is obvious that it suffers 

to some extent from its lack of naturalness. The knee rocking is not very similar to the 

natural walking motion of a human. The user must learn the motion patterns recognized by 

the interface in order to user the Gaiter effectively. 
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2.3 Presence and Distance Estimation 

Studies related to the effect of walking in place on the sense of presence and on 

distance estimation have been conducted by Slater, Usoh, and Steed (1995), and Witmer 

and Kline (1998). The "sense of presence" refers to the sense of actually being present in 

the virtual world. A detailed discussion of the sense of presence can be found in Slater, 

1997. Distance estimation relates to a users ability to judge both the distance traveled 

within the VE and, also, the distance to objects in the VE. One of the key factors effecting 

a users sense of presence and ability to accurately estimate distances is the user interface 

employed. 

In the study by Slater, Usoh, and Steed, it was determined that presence is 

increased when using a walking interface in place of a pointing device. A neural net acting 

on head movement information (obtained from a Polhemus ISOTRAK) was used to 

determine whether or not the subject was walking in place (no special floor was used). 

When walking was judged to occur, the direction of movement through the virtual space 

was determined by gaze direction. In comparison to movement achieved by pointing with a 

mouse, this walking-in-place method provided a greater sense of presence in the VE, 

provided that the user identified sufficiently with the virtual body (VB) included in the VE. 

Whereas for the walking group the degree of presence increased with the degree of 

identification with the VB, for the pointing group there was no correlation between the two 

variables. 

In the study by Witmer and Kline, distance estimation was examined in the real 

world and in VEs for both static (subject fixed) and dynamic (subjects moved through the 

environment) situations using the psychophysical experimentation technique of magnitude 

estimation. Furthermore, in the dynamic case, three methods of movement were employed 
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in the VE: joystick, treadmill, and passive teleportation. The results show that subjects 

underestimate distance and that the effect is more pronounced in VEs than in the real world 

(at least for the VEs considered). Also, the sense of presence was found to be greater with 

the treadmill than with the other movement methods. However, although traversing a 

distance was found to improve distance estimation, the treadmill was not found to be 

superior to the other movement methods. 

Clearly, much more research is needed to determine the manner in which resolution 

and bias in distance estimation is influenced by the characteristics of the VE and by the 

characteristics of the movement method selected for exploring the VE. Also, of course, 

information must be obtained on how such characteristics influence aspects of spatial 

perception other than distance estimation (for example, angular estimation, or, at a more 

general level, estimation of topological properties of the space). 

2.4 Expending Effort 

Finally, it is worth commenting briefly on the importance of perceived effort or 

work cues related to actions performed with the hand and on possible haptic interfaces for 

moving through VEs, including the envisioned finger-walking interface. The fact that work 

cues are important in haptic perception has been clearly demonstrated by Tan and her 

associates at MIT in their studies of how humans discriminate material properties such as 

compliance when grasping an object (e.g., Tan et al., 1995). Even when subjects are 

clearly instructed (as well as provided with correct-response-trial-by-trial-feedback) to 

judge compliance when squeezing the object, they tend to judge the work done in 

squeezing the object. It is conceivable that any of a wide range of haptic interfaces in 

which movement through the VE is controlled by incremental steps involving effort or 

18 



work would be useful. Thus, for example, a joystick interface that was programmed so that 

movement is achieved by repeated throws of the joystick (each throw corresponding to a 

step) would be just as effective as a finger-walking interface. Whether or not the effort 

required results from forces associated solely with free-space movement of the hand or 

from force-feedback devices (e.g., perhaps the joystick stepper should have a spring- 

return-to-center) may not matter. Of all the possible haptic-step interfaces that one might 

consider, the finger walker was chosen as the focus of this thesis because of its relative 

naturalness and because of its natural extendibility to walking interfaces. 
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3 Tracking Systems 

A major component of the proposed finger-walking interface is the tracking system 

used to sense the position of the fingers. Also, because long term goals include the 

extension of this interface to a real (leg) walking interface, and because there are many 

applications in which leg-walking interfaces would have increased utility if they could 

accommodate such actions as crawling, a key consideration in the selection of a tracking 

technology for this thesis is its extendibility in terms of both size and method of movement. 

Another key consideration for the proposed tracking interface is cost. There are 

many sensing techniques which seem well suited to position tracking, but when expanded 

from the small-scale finger walker to the large-scale leg walker become prohibitively 

expensive. For example, the dental industry uses a device to determine the pressure of a 

patient's teeth on a pad which provides extremely high resolution and speed at the cost of a 

few thousand dollars. This type of pressure pad might be suitable for the finger walker; 

however, when expanded to the leg walker the cost would increase to a few hundred 

thousand dollars. 

A further key consideration in the design of the tracking system is simplicity. 

Factors contributing to the simplicity of a design include not only the construction and 

operation of the tracking system, but also the computational power required to translate the 

output of the tracking system (typically an analog voltage) into a movement vector. For 

example, machine vision techniques might be useful for tracking multiple-user postures 

with a video camera. However, the algorithms required to process the images captured by 

the video camera are too complex to be accomplished in real time without an extremely 

powerful computer. 
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Finally, the tracking system needs to coexist with other devices. Mechanical 

interference can occur when the user is encumbered by large amounts of equipment and 

gets tangled in the devices. Electrical interference can occur between the tracker and any of 

the multitude of devices used in VE applications, such as a head mounted display, a 

tracker, and a haptic interface. The tracking system must be designed without detailed 

knowledge of the components making up the rest of the human-machine interface. 

With these design goals in mind (adaptability, cost, simplicity, and coexistence), 

plausible methods of motion tracking for a finger walker include: mechanical trackers, 

pressure-based trackers, photo-cell and fiber-optic trackers, direct-vision trackers, inertial- 

sensing trackers, ultrasonic trackers, electromagnetic-field trackers, and electric-field 

trackers. Each of these methods is considered briefly in the following subsections. 

.3.1  Mechanical Trackers 

In mechanical trackers, a system of levers and pulleys is attached to rotary or optical 

shaft encoders (such as potentiometers) that create an analog or digital signal which can be 

used to encode the user's position, velocity, and acceleration. This method of tracking is 

exemplified by the Shooting Star head tracker. A finger-walker tracking system based on 

this concept would have several advantages; however, it would restrict the user's 

movements and might lead to mechanical interference. 
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3.2 Pressure-Based Trackers 

A force-sensitive pad is another method for tracking a user's finger movement 

across an area. Force detection methods involving transducers such as piezoelectric load 

cells or a network of resistors located in a pad (the resistors are located in such a way that 

when force is applied to the pad an electrical connection is made; the resistance of the 

network varies depending on the distance between the contact point and the origin) have a 

good frequency response and large dynamic range, but suffer from other limitations. For 

example, piezoelectric load cells lose sensitivity after extended use. Similarly, when 

resistor networks are used, only two x and two y coordinates can be determined. Another 

problem is that there is no way to precisely match the correct x and y position coordinates 

corresponding to the same force. Furthermore, preliminary tests of this type of tracking 

device showed that the material used in the pad degrades over time, causing problems with 

repeatability (Bechwith, Marangoni, and Lienhard, 1993). 

3.3 Photocell and Fiber-Optic Trackers 

A third plausible method for tracking involves the use of photocells or fiber optics. 

A finger-walking tracker could be set up like a computer touch screen which uses an array 

of photocells laid out in a grid to measure the x and y position of screen contact. 

Alternatively, fiber optic clothing (i.e., pants or a glove) could be created with sensors 

piped along the surface of the clothing to monitor the changes in optical intensity due to the 

bending of the fibers. Each of these fibers must then be connected to a hardware system 

which both generates the laser beam and processes the data. Both these devices would be 
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simple, but the touch screen approach is too costly and the fiber-optic approach is too 

cumbersome. 

3.4 Direct-Vision  Trackers 

A direct-vision system would make use of a video camera and a machine-vision 

algorithm. Such a system could track the user's movements without encumbering the user. 

However, as mentioned previously, machine-vision algorithms require large processing 

power and are difficult to perform in real time. Even when reflectors are attached to the 

body to make the scene easier to parse, the system requires intensive computation. 

3.5 Inertial-Sensing  Trackers 

Inertial-sensing trackers use accelerometers attached to the relevant moving parts of 

the body. By integrating the acceleration twice, both a velocity vector and a position vector 

can be determined for each sensor. Such a tracking system suffers almost no latency. 

However, like many of the previous methods, the user is encumbered by extra equipment. 

In addition, the filtering and software required to determine a stable velocity is not 

computationally simple. Although as technology advances accelerometers are becoming 

both smaller and cheaper, they currently remain expensive and encumbering when multiple 

body parts must be tracked. 
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3.6 Ultrasonic Trackers 

An ultrasonic finger-walking tracker could be set up in either of two configurations: 

a "transmitter-receiver" configuration or a "ping-and-listen" configuration. In the former, 

configuration, a receiver attached to each object being tracked returns a signal each time it 

receives a ping from the transmitter. The tracking of a single point in three dimensions 

requires the use of a single transmitter and three receivers. Thus, the time of flight for an 

array of transmitters and receivers results in a position mapping of the relevant body parts 

which can be compared to the previous map to determine movement. As with the past 

methods, this type of ultrasonic system is too encumbering for the user who must wear a 

suit of receivers. In the ping-and-listen configuration, a transmitter located on the pad 

transmits a ping which partially reflects off the user. This reflection is received by a sensor 

mounted with the transmitter in the pad. As before, the time of flight for an array of 

transmitters and receivers is used to calculate the movement vector of the user. This 

configuration eliminates the need for any equipment on the user; however, the system is 

complex computationally and would require an enormous research effort into the 

orientation of the array of transmitters/receivers, the interference due to multiple reflections, 

and errors due to shapes of the reflectors (feet, legs), in order to determine how well such a 

system could work. 

3.7 Electromagnetic-Field  Trackers 

Many trackers (e.g., the Polhemus FASTRACK) used in VE applications employ 

electromagnetic sensors. This method of tracking is accomplished through the use of a 3- 

axis magnetic dipole source and 3-axis magnetic dipole detectors. The source varies three 

perpendicular electromagnetic fields in a known pattern, and the resultant nutating magnetic 
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vector field is measured by the detector dipoles. The nutating magnetic signal received at 

the detector can then be processed to yield its position and orientation with respect to the 

source. Multiple body parts can be tracked simultaneously by using multiple receivers (one 

on each body part to be tracked). Because the system must cycle through each 

source/detector set, the rate at which the body position is updated decreases as more 

transmitters are added. Also, as more sensors are used the likelihood that the frequencies 

used in the tracking system will interfere with other devices employing electromagnetic 

fields increases (i.e., HMD typically use a Polhemus trackers). In addition, 

electromagnetic trackers encounter interference problems from surrounding fields. 

Although such trackers are used extensively in VE applications, they suffer from 

interference, they are costly, and they encumber the user. 

3.8 Electric-Field Trackers 

An electric-field tracker is a simple device which can update a VE with the user's 

velocity without encumbering the user. The user need only attach a single transmitter to his 

body (i.e., an electrode connected to the user through a wire attached to the HMD) and the 

position of his body, specifically the fingers, can be detected by receivers located in the 

area surrounding the user. Thus, the user is encumbered with only a small electrode, not a 

full set of transmitters as with some of the previously discussed tracker designs. The 

receivers detect the strength of the field at specific points. If enough receivers are used, 

multiple body parts can be tracked in multiple dimensions (Zimmerman, Smith, Paradiso, 

Allport, and Gershenfeld, 1994; Smith, 1995 and 1996; andBik, 1997). 
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4 Detailed Consideration of Electric Field Trackers 

"Electric Field sensing refers to a family of noncontact measurements of the human 

body made with slowly varying electric fields"[Zimmerman, Smith, Paradiso, Allport, and 

Gershenfeld, 1994]. There are three different methods for sensing electric fields: loading 

mode, shunt mode, and transmit mode. In loading mode, measurements are taken of the 

change in current lost at the transmitter. These changes in current are then used to analyze 

the position of the object being sensed in the electric field. In shunt mode, neither the 

transmitter nor the receiver is connected to the object. By measuring the change in 

capacitance between the transmitter and receiver, a grounded object within the field can be 

detected. Finally, in transmit mode, the transmitting electrode is in direct contact with the 

human body. Thus, the human body itself becomes the transmitter. The finger walking 

tracking device discussed in this document will be based on transmit mode electric field 

sensing. 

4.1  Transmit Mode 

In transmit mode, the transmitting electrode is attached directly to the object which 

is to be sensed. In the case of the finger walking interface, the electrode is either attached 

directly to the human body or to an alternate transmitter which fits over the hand, such as a 

glove. Receivers are then used to sense the changes in the electric field created by the 

transmitter. A simple circuit diagram of the process is shown in figure 3. The transmitter, 

T, is directly connected to the users hand and the user is free to move his hand and fingers 

around. The receiver, R, is set some distance, D, from the transmitter. This design allows 

for several capacitance's resulting from the electric field created by the transmitter to be 
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GROUND 

Figure 3: Lumped circuit model of Electric Field Sensing (Smith, 1996) 

measured. The internal resistance and capacitance of the human body is represented by R. 

and C(. respectively. The capacitance between the human body and ground is represented 

by C4. The capacitance between the transmitter electrode and the receiver electrode is 

represented by C, and C3 respectively. Finally, the capacitance between the human body . 

and the receiver is represented by C,. This capacitance, C;, represents the geometry of the 

transmitter with respect to the receiver. 

4.2  Capacitance  Sensing 

The capacitance sensed can be directly related to the distance, d, of the transmitting 

object from the receiver. The magnitude of the electric field falls off at a rate proportional 

to the inverse square of the distance, 1/d2, for point charges and at a linear rate, 1/d, for 
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parallel plates. When the distance between the transmitting object (i.e. the user's fingers) 

and the receiving object (i.e. a wire) is small compared to the size of the receiving object, 

the two objects should be analyzed in terms of point charges. When this distance is small 

compared to the size, the objects should be analyzed as parallel plates. In the case of the 

finger walking interface, this distance is small when compared to the size of a typical user's 

fingers and the receiver required. Thus, the electric fields used in the finger walking 

interface are analyzed as parallel plates. 

Measurements of the capacitance, C,, sensed at the receiver can be used to 

determine the position of the transmitter with respect to the receiver. The measurements of 

the electric field consist of the superposition of the electric fields created by each component 

of the transmitter. Each charged element in a charge distribution contributes dE to the 

overall electric field surrounding the object, E. By integrating over the entire distribution of 

the field contributions from each charge in the distribution, the resultant electric field may 

be determined: 

where q is the charge of the transmitter and e is the permittivity of the material the electric 

field is traveling through (e0 is the permittivity of free space). As can be seen from this 

equation, objects which are closer to the receiver contribute more to the magnitude of the 

electric field at the receiver than objects further from the receiver. By shielding the receiver 

from most of the human body and concentrating solely on the index finger and middle 

finger of the user, the measurements of the electric field will consist only of the 

superposition of the fields created by the two fingers. 
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When used to sense just the fingers of the user, the electric field will vary with 

changes in the position and geometry of each individual finger. The capacitance, C,, is 

related to the charge, Q, of the object transmitting the electric field and the electric potential, 

V, sensed at the receiver: 

C = §    or   Q,. = SCiyV;. . (2) 
v i 

By substituting in the strength of the field created for the charge, the above equation 

becomes 

C = AT- (3) IfifV 

where /„ is the current of the receiver and/is the frequency of the field. This capacitance 
A 

can be determined and used to analyze electric fields. The potential difference between two 

plates, neglecting fringing effects, is 

v = ]Eds = JL]ds=*L, 
J F.A J e„A 

(4) 

where A is the area of the plates and d is the distance between the plates. Therefore, the 

capacitance between the plates, see figure 4, is 

C = £QA. (5) 
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Figure 4: Cross section of a charged parallel plate capacitor. 

The capacitance varies depending on both the geometry of and the distance between the two 

plates (receiver and transmitter). In other words, the distance between the transmitter and 

the receiver is 

d=eA 
C   ' 

(6) 

where the area, A, is a constant depending on the configuration of the receiver and 

transmitter and C is the capacitance measured by the electric field sensor. 

4.3 Electric Field Proximity Sensor 

The Electric Field Proximity Sensor (EFPS) developed at the MIT Media Lab 

incorporates this concept of electric field sensing into its design. The EFPS generates the 

electric field as a sinusoidal waveform which can be set between 10 and 115 kHz. The 

Electric Field Proximity Sensors output an electric potential (analog voltage) representing 

the field strength of the signal transmitted by the source at the receiver through 

synchronous detection which eliminates most of the electric-field noise associated with 

other nearby objects. The EFPS contains the circuitry required to create this electric field 
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and detect its strength at a specific location. The main advantage in using electric-field 

tracking is the lack of cumbersome equipment. The coupling of the user to the single 

transmitter can be accomplished through a simple button, which the user touches whenever 

he wishes to use the tracking device, or through a connection in the HMD. Since each 

EFPS costs only a few hundred dollars, the hardware for such a device is also relatively 

inexpensive. 

The Electric Field Proximity Sensor board requires under 100 ma to produce and 

analyze the electric field. The circuitry of this board, specifically the receiver side filter and 

high gain operational amplifiers, and "a process called synchronous detection" [Bik, 1997], 

gives the system a high immunity to noise interference from local electric fields greater than 

70 dB. For a complete schematic of the board and circuitry see Appendix A. This board 

can be operated in both the shunt mode and transmit mode. For the purposes of this study, 

the board will be used in the transmit mode only. 

The transmitter of the finger walking interface is connected to the Electric Field 

Proximity Sensor board through a BNC connector. A frequency generator on the 

Proximity Sensor board creates a sine wave between 10-115 kHz. This frequency is 

specifically determined by the value of a potentiometer, T2, which can be set on the board. 

The amplitude of this sinewave has a maximum value of 17 V peak to peak and is also set 

by a potentiometer, T,. 

The transmitted signal is received by an antenna connected directly to the Electric 

Field Proximity Sensor board through a BNC connector. The EFPS receiver can consist of 

any conductive material ranging from a single wire to a plate. An input filter compares the 

waveform of the signal detected with the signal sent and passes only the signal with the 

same waveform as the signal transmitter. The sensitivity of the receiver can be adjusted 
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through a potentiometer, T4. The value of this potentiometer is an offset which is added to 

the signal received. The greater the offset, the more sensitive the proximity sensor board is 

to changes in the position of the transmitter. 

Before being outputted from the proximity sensor board, the received signal passes 

through an amplification stage. The level of amplification and the range of the receiver 

signal is controlled though a final potentiometer, T3. The output of this final stage ranges 

from 0 to+12 Volts. 

When properly configured, the EFPS offers an inexpensive method of tracking the 

movement of a user's fingers across a fixed surface surrounded by an array of receivers. 

Table 1 shows the possible configurations of the EFPS. The number of boards required 

for a tracking system is dependent on the level of precision required by the system. For 

example, a two dimensional, single finger tracker requires one transmitter and at least two 

receivers, one for each direction (x, y). Thus, this type of system would need two 

proximity sensor boards. 

Name Type Potentiometer Range Effect 

Output Amplitude Tl 0-lOOKohm 0-17 peak-to-peak voltage 

Frequency T2 0-5K ohm 10-115 kHz 

Range T3 0-100Kohm 1-4 gain 

Sensitivity T4 0-lOOKohm 0-5 Volts offset 

Table 1: The four adjustable potentiometer settings on the Electric Field 
Proximity Sensor board and their effect on the system output. 
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5 Experiment #1—Tracking Performance 

5.1  Objective 

The aim of this experiment is to establish a set of criteria for the design of an EFPS 

system for tracking the movement of a user's fingers. Specifically, this experiment is 

designed to determine the affect on the efficiency and resolution of the EFPS system of 

certain factors: the size, type, and placement of the receiver; transmitter design; interference 

from the human body and outside sources; and the analog to digital conversion. In order to 

test these factors, different antennae arrays and transmitters are designed and tested. 

Three key questions which should be answered are the size of the receiver, the type 

of receiver to be used (a length of wire, a conductive plate, etc.), and the placement of the 

receivers (in plane or out of plane with respect to the transmitters). A receiver with a large 

surface area has a greater operational range between the source transmitter and the receiver. 

In addition, the height of the user's fingers above the surface of the pad will affect the 

performance of the EFPS because the receiver detects the absolute distance between the 

transmitters and receivers, which depends on both the x and y components of the user's 

finger and the height of the user's finger from the surface of the pad. For example, a 

receiver in the plane of the transmitter will be more sensitive to changes in the height of the 

transmitter than receivers out of the plane. Thus, a wire mounted in the same plane as the 

surface of the pad will be more affected by changes in height than a plate mounted either 

vertically or at an angle to the surface of the pad. 
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The second design criteria is the type of material used for the transmitter and its 

design. The material will affect the magnitude of the electric field generated and, thus, the 

performance of the system. The greater the resistance of the material, the weaker the signal 

generated. Possible materials for the transmitters include aluminum, copper, and the 

human body. When the human body is used, an electrode either needs to be attached 

directly or capacitively coupled to the user's body. As with the performance of the EFPS 

receivers, the performance of the transmitters will be greatly affected by the surface area of 

the transmitter. Therefore, in this experiment, two transmitting electrodes will be used in 

place of a single electrode connected to the user's body. This simplification will aid in the 

development of the mechanical, electrical, and software systems required to create a finger 

walking interface. 

The third major factor is the effect of conductive bodies in the electric field 

generated by the EFPS. Conductive bodies in electrical contact with the transmitter will 

begin broadcasting the electric field, thereby increasing the strength of the field detected by 

the receivers. On the other hand, grounded conductive bodies within the field will absorb 

the transmitted electric field, decreasing the strength of the field. Thus, the pad area should 

be as free as possible of other conductive bodies. One possible method to isolate the 

receiver from interference is to keep the human body electrically isolated from the 

transmitter (i.e. separate transmitters for each finger). Another possible method to 

eliminate outside interference is to construct a grounded shield around the pad which will 

absorb all interference from sources outside the direct surface of the pad (i.e. human body 

transmitting but only the fingers are detected). 

The fourth design criteria is the method used to convert the analog electric potential 

out of the EFPS boards to a digital signal which can be manipulated by a computer. 

Specifically, there are three key factors of the analog to digital PC card chosen which may 
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affect system performance: resolution, speed, and error rate. Resolution is a measure of 

the precision of the analog to digital conversion. For example, a card with a 0.1 voltage 

resolution can detect changes in electric potential every 0.1 volts. The speed of an analog 

to digital card is a measure of the time required to acquire the data. If the card takes 0.1 

seconds to acquire a sample, the fastest update rate for the finger walker system is 10 Hz, 

which is too slow for a virtual environment system. The error rate of the card is a 

measurement of the magnitude of the error in each conversion. For example, an error rate 

of 0.1 voltage means that every reading is accurate within 0.1 volts. All three of these 

factors should be minimized in order to maximize system performance. 

The goal of this study is to compare different EFPS system configurations in order 

to determine which is the most effective. Four different receiver setups were designed to 

test the effects of receiver size: a four receiver array of 4" long 18 gauge wires, a four 

receiver array of 8" long 18 gauge wires, a four receiver array of 2" by 4" aluminum plates. 

Each of these setups are compared to each other through a number of experiments. This 

study will allow for a determination of the most effective receiver antennae design, as well 

as an assessment of the effectiveness of an EFPS system. 

5.2 Experimental Apparatus 

To test the four receiver designs and two transmitter designs, a test platform was 

designed and built. The construction of this test platform required three major system 

components: the mechanical system (section 5.2.1), the electrical system (section 5.2.2), 

and the computer software (section 5.2.3). 
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5.2.1 Mechanical System 

The mechanical system designed for these receiver experiments incorporates three 

critical design features. First, the test platform requires a modular design which allows for 

components to be quickly switched in and out. With such a design, different receiver 

components can be tested with the same pad surface and transmitter. In addition, the test 

platform needs to be easily adapted to new concepts with regard to receiver design. A third 

factor is the need for a method to aid in the debugging of the EFPS system. Specifically, a 

grid on the surface of the walking interface is necessary to match specific finger positions 

to specific voltages. 

A secondary concern in the design of the finger walking interface is the choice of 

material used in the construction of the pad. The walking surface requires a durable 

material which can withstand the abuse of constant use as a computer interface. The 

material must also have a low coefficient of friction, allowing user's fingers to slide across 

the interface surface, encountering only a slight amount of resistance. Thirdly, the material 

must also be easy to machine in order to manufacture the mounts required by the receivers 

and wires associated with the interface device. Finally, the material must be inexpensive in 

order to keep the price of the interface device as low as possible. Acrylic was chosen for 

the initial construction of the finger walking interface to meet all the material criteria 

(durability, low coefficient of friction, easily machineable, and low cost). 

To meet these design criteria, a base plate was designed upon which each of the 

remaining system components (receivers, wires, and shielding) could be mounted. As can 

be seen by looking at the mechanical drawings of the base plate in figure 5, the design 

simply consists of a 8-1/2" by 8-1/2" square plate of acrylic with a grid for positioning and 

mounting holes for the receivers and shield. The base plate was designed to mount 
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Figure 5: On the left side is the mechanical drawing of the base plate, while 
on the right is a picture of the actual acrylic plate. 

brackets for the receivers at three separate distances offset from the edges of the walking 

surface. By measuring a test subject's finger walking range it was determined that a 

walking surface of approximately 4" by 4" would be more than adequate to allow a full 

range of motion for the user. Thus, a 4" by 4" section of the base plate acts as the walking 

surface and is overlaid with a grid. This positioning grid is milled 1/8" deep on the 

underside of the base plate. Because acrylic is clear, the grid can be seen through the plate 

while, at the same time, allowing the walking surface to remain smooth. 

In order to meet the design criteria for modularity and adaptability, a system of 

brackets was designed to mount the receivers to the base plate. Several different brackets 

were designed to mount the different receivers. Each bracket consisted of three main parts: 

the receiver mount, the base plate mount, and the BNC cable mount. Figure 6 shows a 

typical receiver bracket used to mount a 4" long 18 gauge wire parallel to the surface of the 

base plate. It consists of a mounting for a BNC cable connection, the mounting grove for 

the wire, and the mounting holes for attaching the bracket to the base plate. The mounting 

groove allows the wire to be mounted slightly above the walking surface in order to test the 

effects of in plane and out of plane receivers. 
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Figure 6: Receiver bracket for mounting a 4" long wire parallel to the 
surface of the base plate. 
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Figure 7: Mechanical Drawings of the ground plate and hood used to isolate 
the receiver array from outside interference. 
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In order to eliminate interference from outside sources (other conductive bodies, 

other unrelated electric fields, etc.), the base plate and receivers are surrounded by a 

grounded shield. The shield consists of two major parts which can be seen in figure 7: the 

bottom ground plate and the hood. The bottom ground plate consists of a 1/8" thick plate 

of aluminum with mounting holes for the hood and base plate. The base plate is elevated 

off the surface of the bottom ground plate by nylon standoffs. The hood slides snuggly 

over the base plate and receivers, isolating them from outside interference. While resting 

his wrist on the top of the hood, the user inserts his fingers through a 2-1/2" by 2-1/2" hole 

cut through the top section of the hood. In addition to this hole, one slit is cut in each of 

the four sides of the hood allowing the receivers to be connected to the EFPS boards. 

5.2.2 Electrical System 

The electrical system is crucial to the performance of the finger walking user 

interface. The EFPS is used to generate the electric field and analyze the electric potential at 

the receivers. Special modifications are required when using more than one receiver with'a 

specific transmitter. An analog to digital converter is used to translate the analog voltage 

outputted from the EFPS's to a digital value which can be manipulated by a computer. 

Refer to Appendix C for the complete electrical schematics of this experimental system. 

This system uses four Electric Field Proximity Sensor boards. In order to use more 

than one receiver to detect the same transmitted signal, the transmitted waveform must be 

available for each of the Electric Field Proximity Sensor boards. To do this, the signal 

from pin 2 of the ICL8038 precision waveform generator on the transmitting board must be 

attached by a wire to the .1 fif capacitor, C4, on each additional board receiving the same 
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transmitted signal. In addition to this connection, the transmitter on the second board must 

be disabled by cutting the trace at pin 2 of the ICL8038 chip. See figure 8 for a schematic 

depicting this modification. 

The boards are mounted in a case which also contains the system power supply. 

Both the connections to the pad and the connections to the analog to digital converter card 

are made through the rear panel of this case. The transmitters and receivers are connected 

through BNC cables. The receivers used in this experiment consist of either a single wire 

or an aluminum foil plate. The outputs of the EFPS cards are connected by a 9-pin 

connector to the analog to digital card. 

The analog to digital conversion is done using a Keithley Data acquisition board, 

the DAS-1602. This card allows for 8 differential or 16 single-ended analog inputs at a 

resolution of 12-bits. The DAS-1602 can sample a ± 10 volt analog input 100 thousand 

times per second at selected gains (1, 2, 4, or 8) through any of three different modes: 

program control, interrupt service routine, and demand mode direct memory acquisition 

(DMA). 

The DAS-1602 acquisition board meets all the necessary requirements of the finger 

walking user interface for the analog to digital conversion. The card has a resolution of 12 

bits over a ± 10 volt range which allows the card to detect changes in voltage every 0.005 

volts: 

V    -V ■        20 
Resolution =   ™x     """ = -=- «.005V . (7) 

4096        4096 

The maximum delay of a DAS-1602 conversion is 8.5 us which sets an upper bound on 

system speed at approximately 100 kHz: 
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Max frequency = 
1 

time    8.5/JS 
= lOOKHz. (8) 

Finally, the error rate of the analog to digital card is 0.02% of the data reading within ± 

one least significant bit. In other words, the maximum error of any reading will be ± 7 

milivolts: 
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Figure 8: Modifications to the Electric Field Proximity sensor required to 
setup a system consisting of one transmitter and two receivers. 
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Max Error = ±[(1^) • (0.0002) + (USB)] 

= ±[(10 V) • (0.0002) + (0.005V)]. 

= +0.007V 
(9) 

The system software provided with the analog to digital card is used to configure 

the card. Using this software, D1600.CFG, the card is set to 10 MHz clock which results 

in a sample rate of approximately 100 kHz and 8 differential bipolar inputs. The required 

configuration files are available in Appendix D. 

The main analog and digital input/output connector for the DAS-1602 is a 37-pin D- 

type connector accessed at the rear of the computer. A schematic of the connection between 

the Electric Field Proximity Sensors and the analog to digital card is shown in figure 9. 

Xi KB B-typ» Conmctcr 
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Figure 9: Connection between the EFPS and the analog to digital card. 
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The ground plate and hood are electrically grounded through the ground wire 

associated with the BNC coax cable for receiver 1. A wire from the BNC connector on 

receiver 1 is attached to the ground plate. 

As previously mentioned, the key factors affecting the performance of the 

transmitter design are the surface area and the resistance of the transmitter. To test these 

factors, two types of transmitters were designed: a glove design and a thimble design. The 

glove consists of a ring of charge around the tip of the finger of both the fore and the 

middle fingers of a thin glove. Each ring of charge is connected to a separate transmitter. 

The thimble design consists of two sewing thimbles also connected to separate transmitters. 

Both designs were initially tested to determine their effect on the performance of the system 

5.2.3  Computer Software 

The software provided with the analog to digital card includes a control panel for 

viewing each of the channels from the analog to digital card. This application is used to 

quickly analyze the output of the EFPS boards to determine if the four potentiometers on 

each board are properly adjusted. The adjustments are made so as to maximize the distance 

traveled by the user's finger as it moves away from the receiver and the electric potential 

decreases from 10 volts to 0 volts. Once properly adjusted, the EFPS will output a unique 

set of electric potential readings depending on the position of the transmitter over the pad. 

The Keithley Data Acquisition ASO-1600/1400 Advanced Software Package is 

used to control the DAS-1602 card. This package supports command calls from C, Pascal, 

and Dynamic Link Libraries (DLLs). Presently, the Finger Walker uses the C++ functions 

provided with the 32 bit software library Dasshl32.1ib for initializing a connection 
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(KjOpenDriver), communicating with the drivers (KjGetDevHandle), retrieving a sample 

from the card (K_ADRead), and closing a connection (KjCloseDriver). See appendix E 

for details on these function calls. The C++ code for acquiring one data sample from each 

of the four channels used on the analog to digital card is shown in figure 10. First, the 

hardware and software are initialized. Next, communication is established with the driver 

through a device handle. Then the data samples are acquired from the relevant channels of 

the analog to digital card. Finally, the driver is closed and all relevant resources are 

released. 

{ 
DWORD hDrvl600; // Driver Handel 
DWORD hDevl600; // Device Handle 
short nErr; // Function return error flag 
WORD wADval; // Storage for A/D value 

// Initialize the hardware and software 
if(( nErr = K_OpenDriver( "DAS1600-, "dasl600.CFG", SchDrvl600)) != 0) 
{ 
putchar(7); 
printf("Error %X during K_OpenDriver", nErr); 
exit(nErr); 
} 

// Establish communication with the driver through a device handle 
if(( nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0) 
{ 
putchar(7); 
printf("Error %X during K_GetDevHandle ", nErr); 
exit(l); 

) 

// Read channel 0 at gain 1; stor sample in Advalue 
if((nErr = K_ADRead(hDevl600, 0, 0, twADval)) != 0) 
{ 
putchar(7); 
printf("Error %X in K_ADRead operation.", nErr); 
exit(l); 
} 

// Strip channel tag and display ADvalue 
printf("A/D value from channel 0 is: %x\n", (wADval»4)&0xfff); 

// Close the Driver and Release All Resources 
K_CloseDriver(hDrvl600); 

return 0; 
1 

Figure 10: Analog to digital code to acquire a sample from channel 0 at a 
gain of 1 and print the data to the screen. 
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The data acquired from the analog to digital card by the K_ADRead function is 

stored in the form of counts. The analog to digital card acquires the electric potential 

reading by charging a capacitor and storing the time required for the capacitor to discharge. 

The analog to digital driver returns values left-justified in the lower 16 bits of a long 

integer. To unpack this data into a variable which represents the counts, the data in the 

long integer must be stripped of the channel tag and right shifted four places: 

Actual Value = (right - shift data 4 places) bit - wise AND with Offf 

Counts[a] = (wADval» 4) & Oxfff (C + + Code) 

The C++ code for stripping the channel tag and shifting the data is shown in the second 

half of equation 10. This variable can then be translated into its voltage equivalent through 

the following equation: 

Voltage = (count-lO^V^-V^) (B.polor) 

Voltage = CountsxV™ (Unipolor)       (11) 
6 4096 

Voltage = [{((double)Counts[a]) - 2048) * 20)/4096;      (C + + Code) 

where V    is the maximum voltage read by the analog to digital card (+10 Volts in this 
max *** 

experiment) and V^ is the minimum voltage read by the analog to digital card (-10 Volts in 

this experiment). 

To evaluate the different receiver arrays, data must be collected and stored in a text 

file. Microsoft Excel contains a feature which allows tab delimited files to be opened 

within the spreadsheet program. Thus, by storing the voltage reading from each channel of 
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RN     X        Y        SN      V,       V2       V3       V4       C,       C2       C3       C4 

Figure 11: Tab delimited document format. 

the analog to digital card in a tab delimited text file, the receiver arrays can be analyzed and 

compared to one another. The tab delimited document format used for this experiment is 

shown in figure 11. The first column signifies the position number of the sample, or 

SampleNumber {SN). Each position on the grid has a SN associated with it. For example, 

SN=\ . The second and third column signify the x and y coordinates of the sample. The 

fourth column indicates the RunNumber (RN) of the data at that position. For example, the 

first data sample at position (1,2) will have RN=l and the second will have RN=2. The 

next four columns signify the electric potentials (V;, V2, V3, V4) acquired by the analog to 

digital card from each of the four EFPS boards which is determined by applying equation 

11 to the counts (Cy, C2, C3, C4) collected from the analog to digital card. The code to 

.output the data acquired by the analog to digital card to this tab delimited text format is 

shown in figure 12. 

Using the functions for capturing data from the analog to digital card and outputting 

to a tab delimited file, five different programs were written to test the various properties 

int SampleNumber=1; // Sample position number (1-64) 

int PosX=0; // X-coordinate on grid 

int PosY=0; // Y-coordinate on grid 

double Voltage[4]; // Converted Voltage reading 

int Counts[4]; // Counts reading from a2d card 

int RunNumber=l;       // Run Number of data at a single point (1-10) 

int output_text(void) 

Figure 12: Tab delimited text output C++ code. 
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associated with the EFPS, the transmitter, the receiver, and the analog to digital card. 

These five programs can be seen in Appendix E. TbedO.c collects ten data points every 

inch along x, y plane (25 points). Tbedl.c collects ten data points every 1/2" along x, y 

plane (81 points). Tbedl.c collects ten data points every 1/2" along x, y plane (81 points) 

with a one second delay between samples. Tbed3.c collects one data point every 1/2" 

along x, y plane (81 points) repeated ten times. Finally, Height.c collects ten data points 

every inch along x, y plane (25 points) at five different elevations (0", 1/4", 1/2", 3/4", and 

1"). 

5.3 Experimental Methods 

Since the type and placement of the receivers is crucial to the operation of the finger 

walker, a study of the resolution (section 5.3.3) of three different receiver setups (section 

5.3.2) was performed in order to determine a suitable configuration. In addition, each time 

the finger walker interface is reconfigured with a new receiver or transmitter, the EFPS 

must be adjusted (section 5.3.1). 

5.3.1  Adjusting EFPS 

Adjusting the settings on the EFPS board is crucial to the performance of the finger 

walker interface. The EFPS adjustments can be split into two phases, both using the ASO- 

1600 control panel. Each time the transmitter or receiver is replaced, the EFPS settings 

must be readjusted. 
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The first phase in adjusting the EFPS is the setting of the frequency and amplitude. 

The amplitude should be set to maximum at all times (T, Full Clockwise Position). In 

order to determine the frequency for each transmitter and receiver pair, the proper phase 

and wavelength must be found through trial and error. With the range (T3 Full 

Counterclockwise) and the sensitivity (T4 Full Counterclockwise) set to their minimum 

values, the frequency is slowly varied until the voltage received is maximized. 

Once the frequency and amplitude are set, the range and sensitivity can be adjusted 

to maximize the performance of the selected receiver and transmitter pair. Ideally, when 

adjusting receiver 1, the output voltage displayed on the ASO-1600 control panel with the 

transmitter at the points on the grid furthest from the receiver (transmitter located at 

positions (4, 4) and (4, 0)) should be 0 volts, and the reading with the transmitter at the 

point closest to the receiver (transmitter located at position (0, 2)) should be 10 volts. In 

order to maximize the range covered by the EFPS system, the range should be set as low as 

possible and the sensitivity should be adjusted to shift the voltages to the correct position. 

5.3.2  Receiver  Designs 

The three receiver setups are discussed in the following paragraphs. The three 

receiver arrangements, as seen in figure 13, are discussed in the following paragraphs. 

Receiver 1 

The first receiver setup consists of four, four-inch 18 gauge wires mounted along the edges 

of a four-inch by four-inch grid in plane with the surface of the pad (see figure 13a). The 

wire is elevated off the surface of the pad in order to receive the transmitted electric field in 
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Figure 13: The three different receiver configurations,    (a) Shows Receiver 
1 at a 3" offset,    (b) Shows Receiver 2 at a 1-1/2" offset,    (c) Shows 
Receiver 3 at a 0" offset. 

the same plane as the moving finger. These receiver brackets can be offset from the edge 

of the walking surface by any of the three distances (0", 1-1/2", and 3"). 

Receiver 2 

The second setup consists of four, eight-inch 18 gauge wires placed along the edges of a 

four-inch by four-inch grid in the plane of the pad (see figure 13b). As with receiver 1, the 

wire in receiver 2 is elevated off the surface of the pad in order to receive the transmitted 

electric field in the same plane as the moving finger. These receiver brackets can be offset 

from the edge of the walking surface at only one of the three offset distances (1-1/2"). 

Receiver 3 

The third setup consists of four, two-inch by four-inch conductive plates placed 

perpendicularly along the edges of a four-inch by four-inch grid out of plane with the 

surface of the pad (see figure 13c). Unlike receivers 1 and 2, the plate is not in plane with 

the moving finger but, instead, is out of plane with the moving finger in order to decrease 
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the effect of changes in elevation in the transmitter. These receiver brackets can be offset 

from the edge of the walking surface by any of the three distances (0", 1-1/2", and 3"). 

5.3.3  Experiments 

For this study, each of the three setups described above uses two receivers to detect 

each transmitter, one along the x-axis and the other along the y-axis. Four experiments 

were conducted in order to test the performance of the receiver arrays described previously 

in section 5.3.2: testing initial settings of the EFPS system, testing the resolution of the 

system, testing the repeatability of the system, and testing the effect of varying the height of 

the receiver over the surface of the pad. These experiments are described in the following 

paragraphs (see also Appendix F for the code for the test programs). 

Initial Settings 

First, the initial settings of the EFPS are tested to ensure a complete range of 

voltages across the entire surface of the pad. Both the ASO-1600 control panel and the 

TbedO.c test program are used in this experiment. The ASO-1600 control panel is used as 

described in section 5.3.1 to adjust the EFPS for each receiver array. Once adjusted, the 

TbedO.c program is used to capture ten electric potential samples at twenty-five different 

positions (one position every 1" on the grid) and load it into Excel for analysis. During the 

test, the transmitter is placed at the first test position (0", 0") and ten electric potential 

samples are acquired. The transmitter is then moved to the next position (1", 0"). This 

process continues until the tenth sample is acquired at the twenty-fifth position (4", 4"). 

All three receiver arrays, both transmitters, and varying levels of shielding were tested in 

multiple configurations. The data was then stored in text files for later analysis in Excel 

(section 5.4.1). 
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Resolution 

Next, the resolution of the EFPS and receiver arrays is tested to determine the 

factors affecting receiver performance. Both the Tbedl.c and tbedl.c test programs are 

used in this experiment. The Tbedl.c program is used to capture the data at 81 different 

positions separated by 1/2" and load it into Excel for analysis of the resolution of the 

receiver setup. The Tbedl.c program is used to capture ten data samples separated by one 

second at 81 different positions separated by 1/2" in order to test the variance of the setup. 

For both these tests, the transmitter is placed at the first position (0", 0"), ten samples are 

acquired, the transmitter is moved to the next position (0", 1/2"), etc. All three receiver 

arrays, both transmitters, and varying levels of shielding were tested in multiple 

configurations. The data was then stored in text files for later analysis in Excel (section 

5.4.2). 

Repeatability 

Thirdly, the repeatability of the EFPS and receiver arrays is tested to determine the 

factors affecting receiver performance. The Tbed3.c test program is used in this 

experiment to capture the data at 81 different positions separated by 1/2", ten times in a 

row, and load it into Excel for analysis of the repeatability of the receiver setup. Unlike the 

two previous experiments, this test acquires a single sample at the first transmitter position 

(0", 0"). The transmitter is then moved to the next position (0", 1/2") and, again, only one 

sample is acquired. After a single sample is acquired at each of the 81 positions the process 

begins again at the original point (0", 0"). This process is repeated until ten samples have 

been acquired at each of the 81 positions on the grid. All three receiver arrays, both 

transmitters, and varying levels of shielding were tested in multiple configurations. The 

data was then stored in text files for later analysis in Excel (section 5.4.3). 

51 



Height 

Finally, the influence of different transmitter heights above the surface of the pad is 

tested to determine the factors affecting receiver performance. The Height.c test program is 

used in this experiment to capture data at 25 different positions separated by 1" for each of 

four elevations, and load this data into Excel for analysis of different transmitter heights 

over the pad for each receiver setup. As with the first experiment, this experiment acquires 

ten samples are taken consecutively at each point. All three receiver arrays, both 

transmitters, and varying levels of shielding were tested in multiple configurations. The 

data was then stored in text files for later analysis in Excel (section 5.4.4). 

5.4  Analysis/observations 

The data from the three test experiments are analyzed within Microsoft Excel: initial 

settings (section 5.4.1), resolution (section 5.4.2), and repeatability (section 5.4.3). 

5.4.1  Initial  Settings 

The initial settings experiment proved extremely useful both in analyzing the 

settings of the EFPS boards and eliminating several of the receiver setups and one of the 

transmitter designs. Once the EFPS settings were fixed using the ASO control panel, the 

voltage with respect to position was plotted within Excel. A sample plot of receiver 1 

detecting the thimble transmitters at 1-1/2" offset is shown in figure 14. The plot shows 

lines of constant voltage detected by one of the four receivers. The goal of this experiment 

is to set the EFPS tracking system for each setup to maximize the distance traveled by the 

transmitter, up to 4", as the output of the EFPS board falls from 10 volts to 0 volts. Only 

four of the receiver setups achieved this range. Some of the receiver setups could only be 
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set to detect 2" of movement. Table 2 lists each of the possible receiver configurations for 

the thimble transmitters with the effective range of the system. The glove transmitter was 

quickly eliminated as a possible receiver design because too much of the signal was being 

absorbed by the human hand. In addition to eliminating several of the designs, the initial 

settings experiments also demonstrated the need for the grounded shield and grounded 

human body. The grounding greatly reduced the deviation between samples taken at 

identical positions. 

Electric   Potential   Receiver   1 
Offset   of   1-1/2" 

D9-10 

■ 8-9   , 

■ 7-8   ' 
D6-7 
■ 5-6 
□ 4-5 
■ 3-4 

!D2-3 
|G1-2 

!B0-1 
JD-1-0 

Voltage (volts) 

Position  X  (inches) 

2 Position   Y   (inches) 

Figure 14: Sample initial settings plot of the electric potential detected by a type 1 
receiver at a 1-1/2" offset. 
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Receiver Number Offset Distance Covered 

from 0-10 Volts 

Eliminated? 

1 0" 4" No 

1 1-1/2" 4" No 

1 3" 2" Yes 
2 0" 3" No 

2 1-1/2" 4" No 

2 3" 3-3/4" No 

3 0" 1-1/2" Yes 

3 1-1/2" 3-1/4" No 

3 3" 2" Yes 

Table 2: Results of initial tests on the different receiver configurations. 

Electric    Potential    Receiver   2 
Offset     At     1-1/2" 

09-10 
■ 8-9 
■ 7-8 
D6-7 
■ 5-6 
Q4-5 
■ 3-4 
D2-3 
D1-2 
■ 0-1 
n-1-o 

Voltage     (volts) 

Position   Y 
(inches) 

0.5 3.5 1 1.5 2 2.5 3 
Position   X   (inches) 

Figure 15: Sample resolution plot of the electric potential detected by a type 2 
receiver at a 1-1/2" offset. 

54 



5.4.2 Resolution 

The critical factor affecting system performance is the resolution of the system. To 

the best extent possible, each finger position must result in a unique electric potential. The 

resolution of each receiver setup was determined by plotting the voltage with respect to 

position as in section 5.4.1. The resolution plot for receiver 2 with a 1-1/2" offset is 

shown in figure 15. This plot was created by calculating the mean of the ten electric 

potential samples at each of the twenty-five positions. The plot shows the lines of constant 

voltage at every volt (0-10 volts) detected by the receiver. As can be seen in the figure, the 

lines of constant voltage arc slightly towards the ends of the receiver. Also, the change 

from a linear rate of change in the voltage to that of the inverse square can be seen in the 

plot at approximately x=2". Receivers 2 and 3 at a 1-1/2" offset minimize this curvature 

allowing for a constant voltage to be closely associated with the same point. 

5.4.3 Repeatability 

The repeatability of the receiver system is crucial to the overall performance of the 

finger walker interface. If the electric potential is not identical each time the transmitter is 

placed on a specific point on the grid, the EFPS interface will not be reliable as an input 

device for a virtual environment. Therefore, the mean and standard deviation of the ten 

samples for each position on the pad was calculated and plotted. Figure 16 shows the 

calculated mean and standard deviation for receiver 3 at a 1-1/2" offset. This plot is a slice 

of the standard deviation plot, with the y position of the finger held constant at 2" and the x 

position varied between 0" and 4". The measured voltage at every 1/2" is displayed with 

the standard deviation at each position represented by vertical bars above and below this 

point. Most of this deviation can be attributed to the difficulty of returning the finger to the 
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exact point at which the data was previously collected. As can been seen in the figure, the 

standard deviation, though small, is a function of the distance from the receiver. The 

points further from the receiver have a much smaller deviation than those near the receiver 

because the electric potential further from the receiver is decreasing at a rate proportional to 

the inverse square of the distance. Slight changes in position of the transmitter near to the 

receiver have a greater affect on the magnitude detected than movements further from the 

receiver. None of the systems had significant standard deviations at any point along the 

surface of the pad. 

Electric   Potential   Slice   2   Receiver   3 
Offset    at    1-1/2" 

12 

10 

1 
!2   61- 
e 

-2 

0.5 1.5 2.5 

Postitlon    (inches) 

3.5 

Figure 16: Excel plot of the mean and standard deviation for a type 3 
receiver at a 1-1/2" offset.   For this plot, the y coordinate of the user's 
finger is held constant at 2", while the x coordinate varies from 0" to 4". 
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5.4.4   Height 

The height experiment proved that the level of the transmitter above the surface of 

the pad was not crucial to the performance of the finger walker. The output of the EFPS 

for the wire receivers was mildly effected by different heights, while the plate setups were 

virtually unaffected by changes in finger height. The main reason for this is the close 

proximity between the transmitter and the receiver. The effects of varying the height is 

only evident at the outer reaches of the pads usable space. If a wire is actually used in the 

full-scale walker, the effects of changes in height on the EFPS output will most likely 

become noticeable. 

5.5 Results 

After careful review of the analysis of the data in section 5.4, the array of four 8" 

long wires at an offset of 1-1/2" was chosen as the receiver setup for the finger walker 

interface. When compared to the other setups, this receiver array provided the best 

resolution for the system. In addition, the change in electric potential detected by the 8" 

receiver between positions on the pad was the closest to a linear relationship. 
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6 Methods to Determine the Position Vector 

The electric potential from the output of the Electric Field Proximity Sensor must be 

translated into two position vectors. One vector represents the position of the fore finger of 

the user and the other vector represents the position of the middle finger of the user. In a 

computer program, the electric potentials can be processed using two different methods: 

mathematically in real time (section 6.1) or in a lookup table (section 6.2). Both methods 

have advantages and disadvantages which affect the overall performance of the finger 

walker user interface, as discussed in section 6.3. 

6.1 Real Time Processing 

The most accurate method for determining the position of the user's fingers is 

though the direct solution to Maxwell's equations (which will not be discussed in detail in 

this document) uses Maxwell's equations. For an in-depth review of this method for 

analyzing electric fields see Smith, 1995. A brief summary of the results using Maxwell's 

equations of the reference follows 

VXH^E^ + J, 

VxE^/if 

dt 
V-eE^p^ . (12) 

V }fl     dt 
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The Laplace equation is required in order to solve the Maxwell equations above. Laplace's 

equation for an inhomogeneous material is 

-V • eE0 = V • (eV0o) = eV\ + Ve• V0O = 0 . (13) 

As in section 4.2, the capacitance between two conductive bodies can be 

determined. 

G-XW (14) 
i 

By Solving Laplace's equation and the capacitance equations, the distance of an object from 

the receiver can be determined. 

An approximation of Maxwell's equations results in the electrostatic equations 

discussed in section 4. The distance, d{, between the transmitter, Ti% and the receiver, /?,., is 

d>=^L- (15) 

Once the distance is determined between each of the transmitter and receiver pairs, the 

position of the transmitter with respect to the receivers can be determined through 

triangulation. 

During operations (see figure 17), the EFPS will output the electric potential 

measured between the transmitter, Tt, and each receiver, /?,, to the computer through the 

analog to digital card. These electric potentials will be translated to a distance using 
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Yxi   ■- ■ 

Figure 17: Normal operation, triangulation. 

equation 12. The center position of each of the two receivers are fixed at the points R, (xrI, 

}'ri) ^d R2 (xr2> yj- The transmitter, T,, is located at some point (xtl, ytl) within the first 

quadrant of the x, y plane created by the placement of the two receivers. Using 

triangulation, the distances, dl and d2, from the receivers to the transmitter determine the 

position of the transmitter. 

(16) 

Thus, the current position of the transmitter, T]t (xtl, yj is determined. The position of 

the second transmitter, T2, (xt2, yl2) is found in a similar manner. 
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Voltage Receiver 1 
b 
(4, 1.25) (4,2) 

7IW 
10 

(4,4) (4, 3.5) WW (4. 2.5) 
(3.5, 2.5) 

(4, 1.5) (4. 1.25) (4,1) 
(3.5, 1) 

(4. 0.5) (4,0) 
1 
2 
3 
4 
5 
T~ 
7 
T~ 
T~ 
in 

(3.5, 4) (3.5, 3.5) 
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(2, 2.5) 

(2.5, 2) (2.5, 1.5) (2.5. 1.25) 
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TT2T4T 
(1.25.4) 
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Figure 18: Two dimension, eleven by eleven, lookup table with inputs V, and V2. 

6.2 Preprocessing in a Lookup Table 

Because processing the position vector for each finger is extremely demanding in 

terms of computational power in a PC, a lookup table can be used in place of the equations. 

The position vectors are preprocessed and stored in the computer's memory for future 

access. These memory locations correspond to the voltages received by the analog to 

digital card. For example, when two transmitters are used, the voltages received by 

receivers 1 and 2 are used to access the position of transmitter 1 (see figure 18). Similarly, 

the voltages of receivers 3 and 4 are used to access the correct memory location containing 

the position of the second transmitter. The previous example uses two, two dimensional 

lookup tables to determine the position vectors of the transmitters. The C++ code for 

initializing and accessing such lookup tables is shown in figure 19. Both the number of 

dimensions and the size of the lookup table can be varied in order to affect the speed, 

accuracy, and memory requirements of the finger walker system. 

(ft n\ 

The size of the lookup table affects both the accuracy and the memory requirements 

of the finger walker system. The current analog to digital card and EFPS have an effective 

acquisition range of 0 to 10 volts. The size of the table corresponds to the accuracy of the 

system according to how much of the analog to digital data is used. For example, a size 11 
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table will be accessed by integer voltage values, each corresponding to a different 

transmitter position (i.e. V=1.9762 accesses table location 1). On the other hand, a size 

101 table will access different transmitter positions every 0.1 volts (i.e. V= 1.9762 

accesses table location 19). Increasing the size of the lookup table increases the resolution 

of the finger walker system. The problem with increasing the table size is that each 

increase in size requires a proportional, linear increase in system memory: 

e(IN) , (17) 

#define COL 11 
#define ROW 11 

// initializing the lookup table 
struct coord { 

double x; 
double y; 

//Ioofcup[X][Y] 
struct coord lookup. 1 [ROW] [COL]={ 
{{4,4}, {4,3.5}, {4,3}, {4,2.5}, {4,2}, {4,1.5}, {4,1.25}, {4,1.25}, {4,1}, {4,.5}, {4,0}}, 
{{3.5,4}, {3.5,3.5}, {3.5,3}, {3.5,2.5}, {3.5,2}, {3.5,1.5}, {3.5,1.25}. {3.5,1.25}, {3.5,1}, {3.5..5J. {3.5,0}}, 
{{3,4}, {3,3.5}, {3,3}, {3.2.5}, {3.2}. {3,1.5}, {3,1.25}, {3,1.25}, {3,1}, {3..5J. {3,0}}. 
{{2.5,4}, {2.5,3.5}, {2.5,3}, {2.5,2.5}, {2.5,2}, {2.5,1.5}, {2.5,1.25}, {2.5,1.25}, {2.5.1}, {2.5,.5}, {2.5,0}}, 
{{2.4}. {2,3.5}, {2,3}, {2,2.5}, {2,2}, {2,1.5}, {2.1.25}, {2,1.25}, {2,1}, {2,.5}, {2,0}}. 
({1.5,4}, {1.5,3.5}. {1.5,3}, {1.5,2.5}, {1.5,2}, {1.5.1.5}. {1.5,1.25}, {1.5,1.25}, {1.5,1}, {1.5..5}, {1.5,0}}, 
({1.25,4}, {1.25,3.5}, {1.25,3}, {1.25,2.5}, {1.25,2}, {1.25,1.5}, {1.25,1.25}. {1.25,1.25}, {1.25,1}, {1.25..5}, 
{1.25,0}}, 
{{1.25,4}. {1.25,3.5}, {1.25.3}, {1.25,2.5}, {1.25,2}, {1.25.1.5}. {1.25.1.25}, {1.25.1.25}. {1.25,1}, {1.25..5}, 
{1.25,0}}, 
{{1,4}, {1,3.5}, {1,3}, {1,2.5}, {1,2}, {1,1.5}, {1,1.25}, {1,1.25}, {1,1}, {1..5}, {1,0}}, 
{{0.5,4}. {0.5,3.5}, {0.5,3}, {0.5,2.5}, {0.5,2}, {0.5,1.5}, {0.5,1.25}, {0.5,1.25}, {0.5,1}, {0.5..5}, {0.5,0}}, 
{{0,4}, {0,3.5}, {0,3}, {0,2.5}, {0,2}, {0,1.5}, {0,1.25}, {0,1.25}, {0,1}, {0..5}, {0,0}} 
V. 

C 
first = lookup_l[temp[0]][temp[1]]; 

second = lookup_2[temp[2]][temp[3]; 

Figure 19: The C++ code to initialize and access the two dimension eleven by 
eleven lookup table shown in figure 18. 
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where the system memory is a function of the size of the variable used to store the position 

vector (8 or 16 bytes depending on whether a single coordinate or a coordinate pair is 

stored), /, and the size of the lookup table, N. 

The number of dimensions used in the lookup table affects both the speed and the 

accuracy of the system. The current finger walking interface calls for two transmitters and 

four receivers resulting in two voltage values for each transmitter. Thus, there are three 

possibilities for the table dimension used: one, two, and four dimensions. The number of 

processor cycles required by the lookup table is negatively affected by increases in the 

number of tables required: 

0(X), (18) 

where the number of processor cycles required is a function of the number of tables, X. 

For example, a four dimensional table requires only one memory access, while four, one 

dimensional tables require four memory accesses. On the other hand, the memory 

requirements of the lookup tables are positively affected by increases in the number of 

dimensions: 

0[(5-D)ND], (19) 

where the memory required is a function of the number of dimensions, D, and the size of 

the lookup table, N. For example, a four dimensional 100 entry table requires 

800,000,000 bytes, while four, one dimensional 100 point tables require 3200 bytes. 

These factors affecting system performance must be weighed against each other in 

order to determine the best possible combination. Through experimentation and analysis of 



the data from Experiment 1 (section 5), it was determined that the best lookup table 

configuration consists of four, one dimensional size 101 tables. This configuration is fairly 

fast, requires four memory lookups, has an accuracy of 0.1 volts, and uses only 3200 

bytes of system memory. 

Once the size and number of dimensions of the lookup table are determined, the 

position vector must be preprocessed. The test program Tbedl.c is run with the final 

finger walker configuration to determine the voltage vs. position of the system. This data 

is then graphed and a table of the positions (x, y) is created which is referenced by the 

voltages. The accuracy of the lookup table is increased and the memory usage is decreased 

with this interpolation of the position and electric potential experimental data. 

6.3  Performance 

Both methods, processing the position vector mathematically in real time or 

preprocessing it in a lookup table, have several advantages and disadvantages. A 

comparison between these two methods is made by examining the memory requirements, * 

resolution, and processing speed of each method. 

6.4.1 Memory Requirements 

Since system memory in computers is easily expandable to meet almost any need, 

the memory requirements of the finger walker software are not very important. However, 

it is still desirable to keep the requirements to a minimum. Processing the data in real time 

requires only the memory to hold the code instructions and a few temporary variables. On 
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the other hand, the lookup table requires approximately 3200 bytes of memory for storing 

the necessary data. 

6.4.2 Resolution 

As discussed in section 5, a crucial factor in the design of the finger walker is 

system resolution. The finger walker needs to be accurate enough to detect small changes 

in the user's finger positions in order to determine their movement. The real time 

processing method gives extremely good accuracy as compared to the lookup table. Real 

time processing can use the entire range of voltages received without changing the speed of 

the system (0.005V). However, with a large enough lookup table, the difference in 

resolution between real time processing and the lookup table may not be noticeable to a 

user. A lookup table with a resolution comparable to real time processing would require 

2001 entry points per receiver. 

6.4.3 Speed 

The most critical factor affecting the performance of the finger walker interface is 

speed. The interface must update the data fast enough for movement through the VE to run 

smoothly. In terms of speed, there is no question that the lookup table far outperforms the 

real time method. The lookup table takes only a few clock cycles to access the 

preprocessed data in memory, while processing the data in real time requires hundreds of 

floating point operations which require hundreds of clock cycles. Therefore, for the 

purposes of this project, the lookup table is used for determining the movement of the 

user's fingers over the pad. 
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7 Determining The Velocity Vector 

With a position vector determined for each of the user's two fingers, all that 

remains is to determine the velocity vector of the movement. The first stage of this process 

is to calculate the velocity of each of the fingers (section 7.1). Next, these two vectors 

need to be translated into a movement vector for the user (section 7.2), which dictates the 

movement of the user through the virtual environment. Using the results of section 7.2, 

the system can determine the overall magnitude (section 7.3) and direction (section 7.4) of 

the user through the virtual environment. 

7.1 Finger Velocities 

The first step in processing the position vectors collected from the electric field 

sensing is to determine the velocity of each finger. Figure 20 shows the current position of 

the user's fingers, P, (xpl, ypl) and P2 (xP2, yP2), along with the past position of the 

fingers, N, (xNI, yN]) and N2 (x^, yN2), during a normal walking motion. An estimation of 

the velocity of each finger, Vj and V2, is determined by comparing the past positions with 

the current positions: 

V1=(xpl-xm)i+(ypl-ym)'j 

V2 = (xP2 - xN2)i+ (yP2 - yN1)) 
(20) 
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yN1 

yP2 -. 

ypi - 

VN2   — - 

Figure 20: Determining the finger velocities. 

vhere i is the unit vector in the x direction and ;' is the unit vector in the y direction. 

Figure 21: Arc of movement dictated by the human wrist.   The user can 

move forward only in the shaded region. 
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7.2 Determining A Movement Vector 

The next step in the process is to determine an overall velocity vector for the user 

from the velocity vectors of the individual fingers. There are several different movements 

which need to be examined: forward movement, reverse movement, turning left, and 

turning right. Because of the limitations of the human wrist, the user can only make a 

forward motion within in a 180 degree arc (see figure 21). 

During normal forward motion, one finger will be moving forward with the 

direction of movement, and one finger will be moving backwards. Thus, the normal 

walking motion will consist of one positive and one negative velocity. The movement 

forward corresponds to the user's finger moving forward through the air to take a step, 

while the movement backward corresponds to the user's finger sliding across the pad. 

Both fingers are moving at approximately the same rate and direction. In order to simplify 

the algorithm used to determine the user's movement through the virtual environment, the 

velocity of the user's finger sliding on the pad will be used as the overall movement 

velocity. Therefore, only the velocity in the reverse direction (V2 in figure 22a and V, in 

figure 22b) is used to determine the forward movement of the user through the virtual 

environment. 

Because the sensor cannot differentiate between finger walking forward 

(accomplished by one finger moving forward and one back) and finger walking backward 

(also with one finger moving forward and one backwards), there must be a unique motion 

which corresponds to the reverse movement of the user. In the case of the finger walker, 

this unique motion is both of the user's fingers moving in the reverse direction. Therefore, 

both finger velocities, V, and V2 in figure 22c, are used to determine the reverse movement 

of the user through the virtual environment. 
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#P2,N2 

PifN, 

(a) (b) (c) (d) <e> 
Figure 22: Examples of finger velocities,   (a and b) Depicts the normal forward finger 
walking motion,   (c) Depicts both fingers moving in the same direction.   When these 
vectors are positive the forward which does not effect the user's movement through 
the virtual environment.   When they are negative the user moves backwards through 
the environment,   (d) Depicts a left turn,   (e) Depicts a right turn. 

Since the user can only comfortably make a walking motion with his fingers in a 

180 degree arc, the tracking system requires a method to turn past the limits of this arc. In 

the case of the finger walker, the turning movement will correspond to the movement of 

only one finger while the other finger remains stationary. A left turn will be represented by 

the movement of the left finger, V, in a walking motion (see figure 22d), while a right turn 

will be represented by the movement of the right finger, V2 in a walking motion (see figure 

22e). 

7.3  Magnitude 

Virtual environments require the magnitude of the user's velocity from the user 

interface in order to update the current position of the user. Once the velocities of the 

individual fingers have been determined, it is simple to calculate this magnitude. Using the 
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individual finger velocities from equation 20 and the simplifications from section 7.2, the 

magnitude of the movement through the virtual environment is 

K total 

= Jl Vj z j +1 Vi j j (Forward, if Vl is Negative) 

I + V2 j \ (Forward, if V2 is Negative) 

• (21) 

= .l\V2i\ + 

vxi) +(vj) +lv25) +(v2y] 
(Reverse) 

= 0 (Turning Left) 

= 0 (Turning Right) 

When one finger is moving forward and the other backwards, the magnitude of the user is 

the resulting vector formed by the i and ; components (the hypotenuse of the right angle 

triangle formed from the two components). When both fingers are moving backwards, the 

magnitude is the average of the two vectors formed by the movement of each finger. There 

is no magnitude when the user is turning in place. 

7.4 Direction 

Virtual environments also require the direction of the user's velocity from the user 

interface in order to update the virtual environment with the current position of the user. 

Once the velocities of the individual fingers have been determined, it is simple to calculate 

the direction the user is traveling through the virtual environment. Using the individual 
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finger velocities from equation 20 and the simplifications from section 7.2, the magnitude 

of the movement through the virtual environment is 

Direction = • 

= tan 

= tan 

f    M 
Yd 

(  *\ 
Yd 

fr    A       AN^ 

VJ+V2J 
= tan /A A 

Vxi+V2i 
V 
A\2 

(Forward, if Vx negative) 

(Forward, if V2 negative) 

(Reverse) . (22) 

=     VjZ    + V;;]  *(TurningMultiplier)(27t) (Turning Left) 

= J|V2i| + 
2       f       A\2 

V2j\ * (TnrningMultiplier){2.7t) (Turning Right) 

When one finger is moving forward and the other backwards, the user's direction is the 

angle formed by the two components of movement. If both fingers are moving backwards, 

the direction is the average of the angles formed by each of the finger movements. Finally, 

when only on finger is moving, the user turns at a rate depending on the magnitude of the 

finger moving times the Turning Multiplier and 2.K. 
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8 System Architecture 

The next step in the design of an operational Finger Walker user interface is the 

construction of an operational prototype. As mentioned in section 2, the ideal Finger 

Walker will incorporate the following design criteria into its construction: 

-Expandable to Slippery Floor 

-Low cost 

-Require minimal equipment on user 

-Robust 

-Accurate 

-Reliable/Repeatable 

-Ease of use 

The prototype finger walker will integrate as many of these design criteria as 

possible. Section 8.1 gives an overview of the integrated system, including a discussion of 

the steps in its Operation. The design of the prototype can be separated into two separate 

system, the hardware system (section 8.2) and the software system (section 8.3). Virtual 

environments will access the integrated system through a set of C/C++ library functions 

(section 8.4). 

8.1 Integrated System Overview 

As previously mentioned, the finger walking device will be an inexpensive, easy to 

use, interface for virtual environments. The operator of the finger walker will use a natural 
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walking-like motion with his fore and middle fingers with minimal equipment attached to 

the user's body. The input to the finger walker user interface will be a tracking of the 

change in the electric field created by the user's fingers. The Finger Walker will output a 

velocity vector, which will consist of a magnitude and a direction, to the virtual 

environment. 

The operation of the finger walker user interface is easy and straight forward. 

First, the user will sit down at the computer, workstation, or other location setup for 

viewing the virtual environment. The user then attaches the transmitter electrodes to his 

fingers for tracking. Next, the user will place a HMD on his head or position himself 

before a standard computer monitor to view the virtual environment. Finally, the user will 

place his fingers on the finger walker pad and begin moving his fingers in a walking-like 

motion. The finger walker and the virtual environment software perform the calculations 

which update the position of the user in the virtual environment. The finger walker user 

interface consists of five distinct stages of operation: signal detection, data acquisition, 

translation, special operation instructions, and velocity computation. 

Signal detection and data acquisition are both formed in the finger walker hardware. 

The hardware consists of the finger walker pad, Electric Field Proximity Sensor boards, 

power supply, and the analog to digital converter. As the user moves his fingers over the 

pad, the position of the transmitter changes. The transmitter emits an electric field which is 

detected by the receivers. The four receivers detect the distance to the transmitter by the 

strength of the signal at the point of detection. This strength is represented as an electric 

potential, i.e. analog voltage level. This voltage will be sent to the computer running the 

finger walker software. 
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Next, the voltages detected by the receivers are sent to a computer for processing. 

The analog signals from the receivers must be converted to digital signals which can be 

interpreted and manipulated by a computer. Signal conversion can be accomplished 

through the use of an analog to digital converter card which connects to the system bus of 

most PCs. This process will allow the processor to directly access the data acquired by the 

receivers. The analog electric potential from the Electric Field Proximity Sensor board is 

now available for manipulation by software into a position vector. 

The translation, special instructions, and velocity computation stages are all 

performed in the finger walker software system. Once it is available as a digital value from 

the analog to digital converter card, the electric potential voltage can be converted to a 

distance vector in meters. This translation is accomplished in a memory lookup table which 

accesses a specified memory location containing the proper coordinates of the position of 

the finger on the pad. The memory address accessed depends on the magnitude of the 

voltage received from the analog to digital converter card. 

Once the coordinates of each individual finger have been calculated, the software 

then determines the type of movement and any special instructions contained in the 

movement. The new coordinate pairs from the lookup table can be compared to the 

previous set of coordinates to determine the change in position of each finger. By 

analyzing the velocities of each finger, the specific type of movement can be determined. 

For example, a normal forward motion would consist of one finger moving in the positive 

y direction and the other finger moving in the negative y direction, see figure 23. Currently 

the system recognizes normal forward movement (both fingers moving in opposite 

directions), reverse movement (both fingers moving backwards at the same time), turning 

left or right (one finger stationary and the other moving), or no movement at all (both 

fingers moving forward or no change in position). 
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Figure 23: Normal walking motion. 

With the type of movement determined, the software computes the velocity vector 

for the virtual environment. The virtual environment software requires a velocity vector in 

order to change the position of the user in the virtual environment. The type of movement 

determined by the software dictates which finger velocity or velocities to use as the overall 

movement velocity. This movement velocity can then be changed into a magnitude and 

direction and sent to the virtual environment software. 

8.2 Hardware Systems 

The hardware systems detect the electric field and send the data to a computer for 

processing. There are three main hardware subsystems: the pad (section 8.2.1), the 

proximity sensors (section 8.2.2), and the analog to digital card (section 8.2.3). 
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8.2.1 Pad (Transmitters and Receivers) 

The pad subsystem is the critical component of the finger walker human-computer 

interface. The subsystem consists of the walking surface, the transmitters, and the 

receivers. The same test platform as used in experiment 1 (section 5) is utilized in the final 

system prototype (appendix B). As described, two thimble type transmitters are used to 

track the position of the separate fingers. Finally, as discussed in section 5.6, the optimal 

choice for the receiver array are four, 8" long, 18 gauge wires mounted 1-1/2" from the 

edge of the pad. 

8.2.2 Electric Field Proximity Sensor System 

The Electric Field Proximity Sensor subsystem is the same as in Experiment 1 

(section 5). Two pairs of EFPS boards are used for each transmitter. The wiring diagrams 

can be seen in Appendix C. 

8.2.3 Analog To Digital Card 

As with experiment 1 (section 5), the Keithley DAS-1602 analog to digital card is 

used for converting the analog electric potential from the EFPS to a digital value for 

computing the position of the user's fingers. The configuration files and the wiring 

diagram for the connection between the analog to digital card and the EFPS can be found in 

Appendix C. 
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Done 

Figure 24: Flow chart of operation for the finger walker software. 

8.3 Software Systems 

The remaining three stages of processing are performed by means the finger walker 

software package. The software manipulates the electric potential received from the analog 

to digital card to compute a velocity vector. These program components include the 

translation of the data (section 8.3.1), the determination of special instructions (section 

8.3.2), and the computation of a velocity vector (section 8.3.3). The overall program flow 

of the software system can be seen in figure 24. The compete software package code can 

be seen in Appendix G. 
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Figure 25: Flow chart of the software translation stage. 

8.3.1   Translation 

The translation of the electric potentials from an analog voltage to a set of 

coordinates representing the current position of the fingers is the first of three software 

components. This section of the software applies the principles from sections 4, 6, and 7. 

The translation stage can be separated into five main functions: the storage of previous 

points, the analog to digital control, the lookup table, the storage of the current points, and 

error detection. A flow chart of the translation stage is shown in figure 25. 

Before the analog to digital card can be accessed and an electric potential gathered, 

the previous set of coordinates must be stored. The previous coordinates are stored in two 

coordinate structures, old_first and old_second. The function store_last(), as shown in 

Appendix , performs this task. The variables are initially set to (2, 2) and (4, 2) 

respectively. 
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The analog to digital card is controlled through the software functions provided in 

the ASO-1600 Dasshl32.1ib library. The program code for accessing the DAS-1600 is 

shown in Appendix G. The final voltages are stored in the global array data[4] (data[0] 

holds the voltage received at receiver 1, data[l] corresponds to receiver 2, etc.). 

These four voltages are then used to access the memory lookup table. In the finger 

walker prototype, four 101-element arrays of coordinates are used for the lookup tables, 

one for each receiver. Table 1 is accessed by sending it the value detected at receiver 1, 

table 2 is assessed by the value at receiver 2, etc. See Appendix G for the program code 

showing the access of the lookup tables. Each memory address contains the position of the 

one finger in either the x or the y direction depending on the receiver. For example, table 1 

and table two contains the x and y values of finger one. Because a memory address is an 

integer, the decimal point must be stripped off of the voltage value and all the data to its 

right discarded. Thus, each voltage must be multiplied by 10 in order to maintain the 

correct number of significant digits and use the full precision of the array. 

The storage of the finger positions is performed after each table is accessed. See 

Appendix G for the code. The coordinates of each finger are stored in the global array 

coords[4] for easier processing by the remaining stages of the software. 

Each of the main sections of code (Translation, Special Instructions, and 

Computation) contains error detection code. In the event of an error, the software will 

determine whether it needs to restart the entire process to get another set of voltages or 

begin a single function, or set of functions, over. The analog to digital function contains 

code to check the range of values received. 
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Figure 26: Flow chart of the special instructions software stage. 

8.3.2 Special Instructions 

The second of the three software components, special instructions, analyzes the 

position vectors from the translation stage in order to determine the type of movement of 

the user. This section of the software applies some of the principles from section 3. The 

special instructions stage consists of two key functions: determining the x and y component 

of each fingers velocity, and determining the movement type. A flow chart of the special 

instructions stage is shown in figure 26. 

First, the position vectors from the translation stage must be analyzed in order to 

determine the x and y components of the velocity for each individual finger. The global 

position structures first, old_first, second, and old_second are used to determine the 

velocity of finger one and finger two (see Appendix G for the code). The functions 

Get_Delta_Xl(), Get_Delta_X2(), Get_Delta_Yl() , and Get_Delta_Y2() determine the 

change in position of the fingers. These velocity components are stored in the global 

variables Delta_Xl, Delta_X2, Delta_Y1, and Delta_Y2 for later use by the this stage and 

the computation stage. 
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Finally, the finger velocities are analyzed through a set of nested if statements to 

determine the type of movement or special instruction. Currently, there are five different 

types of instructions: normal forward movement (0), nothing (1), reverse movement (2), a 

right-turn (3), and a left-turn (4). Because of the movement restriction imposed by the 

user's wrist, only the y components need to be analyzed, simplifying the analysis. The 

nested if statement, shown in Appendix G, processes the four components of the finger 

velocities by analyzing the positive or negative motion of the y component of each finger's 

velocity (Delta_Yl and Delta_Y2). For example, if Delta_Yl is positive and Delta_Y2 is 

negative the user is moving his fingers in a normal walking motion with one finger moving 

forward and one moving back. Table 3 shows a complete list of finger velocities and the 

corresponding movement types. This program format allows for new instructions to be 

easily added upon demand. The movement type is stored in the global variable type for use 

by the computation stage. 

Finger One Finger Two Movement Type 

none none Nothing (1) 

none positive Nothing (1) 

none negative Right-Turn (3) 

positive none Nothing (1) 

negative none Left-Turn (4) 

positive negauve Normal (0) Finger 2 

negative positive Normal (0) Finger 1 

positive positive Nothing (1) 

negative negative Reverse (2) 

Table 3: Listing of all possible finger movement combinations. 
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8.3.3  Computation 

The final software component, computation, analyzes the finger velocities and 

movement type from the special instructions software component in order to determine the 

velocity of the user through the virtual environment. This section of the software applies 

the principles from section 7. The computation stage consists of three main functions: the 

determination of the x component of the velocity, the determination of the y component of 

the velocity, and the switch statement, which outputs the magnitude and direction for the 

virtual environment. A flow chart of the computation stage is shown in figure 27. 

First, the computation stage calls two functions, Get_Velocity_Delta_X and 

Get_Velocity_Delta_Y, which use the movement type from the special instruction software 

component to determine the magnitude and direction of the user's movement. The 

movement type specifies whether to use the velocity of finger one, finger two, or both in 

order to determine the x and y components of the user's movement. 

Next, the switch statement sets the magnitude and direction of the user's movement 

through the virtual environment. These variables completely depend on the movement over 

(Finger Velocities and 
IVfrtvomont Tvne^ 

4 
Get User Velocity 

Switch 

Done 

(Computation Stage) 

Figure 27: Flow chart of the software computation stage. 
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the pad as discussed in section 7. Each time the users makes either a right or left turn, the 

magnitude of the turn is added to a turning offset (turning_qffset) which is applied to all 

future movements. 

Finally, the magnitude and direction set in the switch statement can be modified to 

adjust the rate of movement and turning within the virtual environment. The two 

parameters, turningjnultiplier and forwardjnultiplier, are scaling factors for modifying 

the user's change in direction and forward magnitude. The correct settings for these 

parameters depend on the specific virtual environment. 

8.4 Library Functions 

The software functions from section 8.3 are incorporated into a C++ library, 

finger.hpp zn.dfinger.cpp (see Appendix G for a complete listing of the library). These 

library functions and files are easily implemented. To use the functions, the header file is 

ip.cluded in the virtual environment software programs: 

#include "finger.hpp" 

This library allows programs to retrieve data in two ways: through the return value of the 

functions or through the global variables {Type, Magnitude, Direction, etc). Finally, this 

library includes the F_Run() and F_Run_Debug functions for accessing the finger walker 

software. 
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The F_Run library function is used to access the finger walker hardware and set all 

the global variables depending on the movement of the user's fingers. The function 

prototype for this function is 

int F_Run(int CallNumber); 

It takes the call number as an input parameter. The first time the Finger Walker interface is 

accessed, the programmer should send a 0. Otherwise the programmer can send any other 

number. When a 0 is passed, the program calls the hardware twice in order to determine 

the magnitude and direction. This first call to the hardware sets the old coordinate variables 

and the second call sets the present set of coordinates. With this done, the magnitude and 

direction can be determined. This function outputs an integer variable representing the type 

of movement by the user's fingers: normal (1), reverse (2), left-turn (3), right-turn (4), and 

nothing (0). When called this function uses the functions described in section 8.3. This 

function also updates all the global variables associated with the finger walker. 

The F_Run_Debug library function is used to access the finger walker software and 

set all the global variables depending on the parameters set. The function prototype for this 

function is 

int F_Run_Debug(void); 

This function bypasses the hardware by calling a lookup table with specific voltages 

depending on the Depug_Number, a global variable. A debug number of 0 causes a 

normal walking motion, 1 causes nothing, 2 causes a reverse walking motion, 3 causes a 

left turn, 4 causes a right turn, and 5 causes an angled forward walking motion. Next, the 

function sets the present set of coordinates, then determines the magnitude and direction. 
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This function outputs an integer variable representing the type of movement by the user's 

fingers: normal(l), reverse(2), left-turn(3), right-turn(4), and nothing(O). When called this 

function uses the functions described in section 8.3. This function also updates all the 

global variables associated with the finger walker. 

85 



9 Experiment #2—Demonstration Program 

In order to demonstrate the library functions and the finger walker user interface 

detailed in section 8, a Windows95 application was created, ADTracker. This application 

also allowed the entire system to be debugged. The finger walker library functions are 

controlled by the Demo Application through several control buttons (section 9.1). This 

application allows the coordinates, magnitude, direction, and type of movement to be 

graphically displayed (section 9.2) using a coordinate grid (section 9.3), a compass 

(section 9.4), and a tracking window (section 9.5). A screen shot of the demo application 

can be seen in figure 28. The code for this application is given in Appendix H. 

9.1   Controls 

The finger walker library functions are controlled by the Demo Application through 

several control buttons and a parameters window. The control buttons include a Run, 

Stop, Debug, and Quit control the flow of the ADTracker program. The parameters 

window, which is accessed through the control button Parameters, allows the user to adjust 

several variables of the finger walker software. 

The user of the demo program has the ability to control the finger walker through 

several control buttons. When Run is pressed, the program begins a loop which 

continually calls the F_Run() function and updates the windows until the user presses 

Stop. This demonstration program also gives the user the ability to run a diagnostic 

program which sends one of five different preset walking patterns to the ADTracker 

program, testing the functionality of the ADTracker program and the finger walker software 

from sections 8 and 9. The Quit button simply exits the program. 
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Figure 28: Main program screen for the ADTracker application. 

Between operations, the user can adjust several variables, Turning „Multiplier, 

ForwardJAultiplier, and DebugNumber in order to calibrate the system. The parameters 

are adjusted through the pop-up window shown in figure 29. The Forward„Multiplier and 

Turning„Multiplier variables may be set to any floating point number. The DebugNumber 

is set to any integer between 0 and 5: normal walking (1), reverse walking (2), nothing (0), 

right-turn (3), left-turn (4), and angled forward walking (5). 
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Figure 29': Parameters popup window. 

9.2  Display 

The global variables contained in the finger walker software are displayed within 

the ADTracker application window during operation (see the screen shot in figure 28). The 

x and y coordinates of the two fingers are shown in the upper left comer of the application 

window (first.x,first.y, second.x, and second.y). The velocity of the user through the 

virtual environment (Magnitude, Direction, Delta_Velocity_X, and Delta_Velocity_Y) is 

displayed directly below the displayed coordinates. Finally, the type of motion of the 

fingers is displayed in the top center. With these variables displayed, the position and 

movement of the user can be tracked at all times. 
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9.3 Position Map 

The coordinates of the user's fingers is graphically displayed in a position map. By 

displaying the coordinates (first.x,first.y, second.x, and second.y) graphically, the finger 

walker software can be debugged. The map consists of a 4" by4" grid located below the 

global variables (see the screen shot in figure 28) with two red dots representing the 

position of each of the user's fingers. This grid allows the user to place his fingers on the 

grid and check how well the coordinates generated by the finger walker interface match 

with the actual position on the grid. 

9.4 Direction Compass 

Just as the position map displays the finger coordinates graphically, the compass 

displays the walking direction of the user graphically. The compass can be seen in the 

screen shot shown in figure ??. The arrow points in the direction the user is moving or 

facing, when standing still. Because the finger walker allows the user to make left and 

right turns, the user's fingers may be moving in a different direction then the user is 

actually moving through the virtual environment. This offset {direction _offsei) is displayed 

in the compass. 
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Figure 30: Tracker window. 

9.5 Tracker 

Finally, a separate window tracks the movement of the user through the virtual 

environment. This window draws a line along the path of the user as determined by the 

magnitude and direction global variables, see figure 30. When the user reaches the limits 

of the window, the ADTracker program scales the movement down, allowing the path 

room to expand. 
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10 Results/Conclusion/Further Research 

The initial tests of the finger walking interface with the ADTracker have provided 

substantial evidence to support the Electric Field Proximity Sensor as an efficient method 

by which to track the movement of the user. The finger walker is fairly accurate when 

tracking the position of the fingers across the pad. In addition, the tracking window proves 

that the finger walker is an effective means by which to move through a virtual 

environment. However, several problems have arisen during these early stages of testing 

and more tests need to be run before the finger walking interface can be used as an interface 

for virtual environments or even expanded to track the motion of a user's legs. 

The main problem encountered during experimentation with the finger walker is the lack of 

a historicis, a memory of past system events. Currently, the system only keeps track of the 

present and previous set of coordinates. In addition, the hardware (analog to digital 

converter and EFPS) is very sensitive to slight changes in the position of the finger and 

noise in the system. These factors cause the system to jump back and forth between 

different rates and even types of movement. By adding more dynamics to the system, both 

a system of filters and a more robust velocity algorithm may be designed to fix this 

problem. The high frequency fluctuations caused by noise and unrealized movement can 

be eliminated through a series of low pass filters setup both before and after the lookup 

table. The rapid changes in movement can be eliminated through a more robust velocity 

algorithm which averages the user's velocity over a longer period of time. Both the filters 

and the new velocity algorithm require past coordinates pairs to be stored in memory for 

longer period of time. Thus, instead of only using the current and previous coordinates to 

determine the velocity, the system could use the current and last 10 sets of coordinate pairs. 

The same holds true for the system of filters. 
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Once these improvements are made to the finger walker, the system should be 

tested further to determine its effectiveness as an interface for virtual environments. In 

addition, the effects of the walking motion and effort expended on the user's ability to 

estimate distances and feeling of presence in the virtual environment should be tested. 

Next, experimentation with a single transmitter should be preformed. Many of the 

experiments from section 5 will need to be rerun in order to determine the most effective 

means of detecting the position of both fingers using only one transmitter. This system 

may require the addition of several more receivers and EFPS boards in order to differentiate 

between the signals being sent from the two fingers. 

Finally, once the finger walker system is finely tuned, the full-scale walking 

interface should be created. The expansion to a full-scale walking prototype requires a new 

receiver array. Again, the experiments from section 5 will need to be rerun. It will likely 

turn out that the system will work simple by expanding the receivers proportionally with 

the increase in the size of the walking surface. One benefit of the walking interface is the 

problem of not being able to turn 360 degrees is eliminated. In addition, the special 

instruction for finger walking in reverse is no longer required. However, the walker needs 

some method of determining the direction the user is facing, which is not required in the 

finger walker. 
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Appendices 

A. EFPS circuit diagram 
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B. Mechanical Drawings Experiment #1 «AutoCAD 
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C. Circuit Schematic Experiment #1 

TS Tt .** MUG 

At / 
If    E    S 

!£-*■ 

^t~^ 

ö?r?^ 

u   ■,'r"€El 

££h~n? 

nnn7 -turn. 

Eg 

*f£2E 5 s5 

106 



D. Keithley Data Acquisition Board DAS-1602 

Clock Select  10MHz 
Wait State 
A/D Mode 
A/D Config 
fi/D Gain 
D/A 0 Mode 
D/A 1 Mode 
D/A 0 Kef 
D/A 1 Ref 
DMA Channel 
IRQ Channel 
Digital Cfg 

Bipolar 
Differential 
[H/A] 
Unipolar 
Unipolar 
5.0 
5.0 
3 
7 

Nunber E55P16s 0 
EXP16 Gains [H/A] 
Number EXPGPs 0 
OPGP Gains [H/A] 
Number EXPHOD 0 
EKP1600 Gains [H/A] 
CJR Channel [H/A] 
Humber of SSIls 0 
SSII Type [H/A] 
SSH Gains [H/A] 
SSIttA Mode [H/A] 
SSH Timing [H/A] 

[Cornnands/Statas] 
|Selectethe.tboar.d.Etype 

4—> to select Next board Show switches Esc when done! 

V CFG 1 BOO 

|  Auto 

DftS-UOD/l U0/1 200       Configuration 

[Board 0] 
BIP 

nSFTTeSö'äsT?BJ!ef,f^l 

10 5 U 

DACO Ref 

10 5 U 

DAC1  Ref 

BIP ||11 UNI 

A/D Mode A/D Config 

lri'1 2 3 U  5 6 C U 

BASE ADDRESS 

-[Conmands/Status]- 

BMA SEL 

Press any key to return to main screen. . . 
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E. ASO-1600 C functions 

The K_OpenDriver() Statement 

The syntax for the open driver statement is as follows: 

K_OpenDriver(char * BoardName, char * CfgFile, &hDrvl600); 

BoardName is the name of the board for future reference when multiple boards are used. 

CfgFile is the driver configuration file. 

&hDrvl600 is the memory address of the driver handle for storing the driver handle for 
referencing the analog to digital board. 

This function initializes the hardware and software for the DAS-1600 analog to digital 
acquisition board. In the case of an error while initializing the board, the function returns 
TRUE, otherwise the function returns FALSE and the board is ready. 

Example 

// Initialize the hardware and software 
if(( nErr = K_OpenDriver( "DAS 1600", "dasl600.CFG", &hDrvl600)) != 0) 

{ 
putchar(7); 
printf("Error %X during KJDpenDriver", nErr); 
exit(nErr); 

} 

K_GetDevHandle() 

The syntax for the get device handle statement is as follows: 

K_GetDevHandle(DWORD hDrvlöOO, int BoardNumber, &hDevl600); 

hDrvl600 is the driver handle for accessing the analog to digital board as set by the 
K_OpenDriver statement. 

BoardNumber is the number of the board for future reference when multiple boards are 
used. 

&hDevl600 is the memory address of the device handle for storing the device handle for 
referencing the analog to digital board. 

This function establishes communication with the driver through a device handle. On 
return from the function, the hDevl600 contains the handle associated with the board 
identified by BoardNumber and hDrvlöOO. In the case of an error while initializing the 
board, the function returns TRUE, otherwise the function returns FALSE and the board is 
ready. 
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Example 

// Establish communication with the driver through a device handle 
if(( nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0) 

{ 
putchar(7); 
printf("Error %X during K_GetDevHandle ", nErr); 
exit(1); 

} 

K_ADRead() 

The syntax for the read analog to digital statement is as follows: 

K_ADRead(DWORD IidevlöOO, unsigned char Channel, unsigned char GainCode, void * wADval); 

hdevl600 is the handle to acquisition the board. 

Channel is the input channel number; 
0, 1,..., 15 (Single-ended configuration) 
0, 1 7 (Differential configuration) 

GainCode is the gain setting for the analog value being acquired: 

Gain Code 1601 gain 1601 input range 1602 gain 1602 input range 
0 1 +- 10 V Bipolar 

0-10 V Unipolar 
1 +- 10 V Bipolar 

0-10 V Unipolar 
1 10 +- 1 V Bipolar 

0-1 V Unipolar 
2 +- 5 V Bipolar 

0-5 V Unipolar 
2 100 +-0.1 V Bipolar 

0-0.1 V Unipolar 
4 +- 2.5 V Bipolar 

0-2.5 V Unipolar 
3 500 +- 0.02 V Bipolar 

0-0.02 V Unipolar 
8 +- 1.25 V Bipolar 

0-1.25 V Unipolar 

wADval is the storage location of the acquired analog to digital value. 

This function uses the board identified by lidevl600 to perform a single analog to digital 
acquisition. The value is acquired on Channel and stored in wADval. GainCode specifies 
the gain to be applied to Channel. In the case of an error while initializing the board, the 
function returns TRUE, otherwise the function returns FALSE and the board is ready. 

Example 

// Read channel 0 at gain 1; store sample in Advalue 
if((nErr = K_ADRead(hDevl600, a, 0, fcwADval)) '.= 0) 

{ 
putchar(7); 
printf("Error %X in K_ADRead operation. 
exit(l); 

nErr); 
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// Strip channel tag and display ADvalue 
printf("A/D value from channel 0 is: %x\n", (wADval»4)&0xfff); 

K_CloseDriver() 

The syntax for the close driver statement is as follows: 

K_CloseDriver(DWORD hDrvl600); 

hDrvl600 is the driver handle for accessing the analog to digital board as set by the 
KJDpenDriver statement. 

This function closes the hardware and software for the DAS-1600 analog to digital 
acquisition board and releases all resources. 

Example 

// Close the Driver and Release All Resources 
K_CloseDriver(hDrv 1600); 
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F Complete Software Code for Experiment 1 

The following are the data collection programs for experiment 1: 

t****************** 

***** 

Program: 

File: 

Function: 

Description: 

Author: 

Environment: 

****************************************** ******* 

Testbed Code 

testbed.h 

Header for all testbed code 

Brian Fitch (BF) 

Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95 
DOS 6.0. 

Notes: 
!estbed2.c, and testbed3.c 

For use with testbed.c, testbed I.e. 

Revisions: 1.00 3/10/98      (BF) Initial Release 
I****************************************************************** 

******/ 

«include <windows.h> 
tfinclude <string.h> 
»include <stdlib.h> 
»include <conio.h> 

»define 1DS_ERR_REGISTER_CLASS 1 
»define IDS_ERR_CREATE_WINDOW   2 
»define STARTBTN 101 
»define STOPBTN 102 
«define CLOSEBTN 118 
«define CONTBOX 124 
«define STARTCHANBOX 104 
«define STOPCHANBOX 105 
»define NUMSAMPLESBOX 108 
«define SAMPLERATEBOX 110 
»define DMASTATUSBOX 113 
»define DMATRANSFERBOX 114 
«define DATALISTBOX 119 
«define IDJTIMER 1 

:har acString(128];   /* variable to load resource strings •/ 
;har *szString = acString; 

;har 'szAppName =' 

HWND hlnst; 
HWND hWndMain; 

";   // class name for the window 

LONG FAR PASCAL WndProc(HWND, UINT, UINT, LONG); 
int nCwRegisterClasses(void); 
void CwUnRegisterClasses(void); 
void lnitWindowFields( HWND hwnd ); 
void InitDASDevice(void); 
void StartAcquiring(HWND hWnd) ; 
void StopAcquiring(HWND hWnd) ; 
void ProcessTimer(HWND hWnd); 
void ShowData(HWND hWnd) ; 
void ProcessError(short ErrNum) ; 

i***************************** ************************************** 

***** 

Program: 

File: 

Testbed Code 

tbedOb.c 

Function: 

Description: 

Author. 

Environment: 

Notes: 
Board 

Revisions: 

main function listing 

Reads 10 points in rapid succession at each point on the 
grid (1-25) 

Brian Fitch (BF) 

Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95 
DOS 6.0. 

For use with Keithley DAS-1600 

1.00 3/10/98     (BF) Initial Release 

******/ 

#include <stdio.h> 
#include "testbed.h" 
#include "dasdecl.h" 
//«include "dasl600.h" 

void clear_kb(void); 
int initialize_text(void); 
int check_ESC(void); 
int check_Q(void); 
int checker(void); 
int get_va!ucs(void); 
int output_text(void); 
int close. driver(void); 
int initii!;ze_A2D(void): 

int SampleNumber=l; 
int PosX=0; 
int PosY=0; 
double Voltage[4]; 
int Counts[4]; 
int RunNumber=l; 

DWORD hDrvloOO; 
DWORD liDev 1600; 
short nErr; 
WORD wADval; 

FILE *fp; 
char filename[20]; 
int check=0; 

// Sample position number (1-64) 
// X-coordinate on grid 
// Y-coordinate on grid 

// Converted Voltage reading 
// Counts reading from a2d card 

//Run Number of data at a single point (1-10) 

// Driver Handle , 
// Device Handle 

// Function return error flag 
// Storage for A/D value 

// File open error flag 
// Temp value for file name 

// Function return interrupt flag 

int main(void) 
{ 

clear_kb(); 

// open a file for storing data 
puts("Enter a name for the file"); 
gets(filename); 
if((fp=fopen(filename, "w")) = NULL) 

fprintf(stderr, "Error opening file %s.", filename); 
exit(l); 

) 

initialize_text(); 
fprintf(stdout, "\nText successfully initialized"); 

initialize_A2D(); 
fprintf(stdout, "\nPress ESC to begin gathering data"); 
fprintf(stdout, "\nPress Q to Quit"); 
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for{;;) 

if((check = checkerQ) = 1) 
{ 

", SampleNumber, PosX, PosY); 

RunNumber++) 

fprintf(stdout, "VnGathering Sample %d (%d, 9fcd) 

for(RunNumber=l; RunNumber<ll; 

{ 
get_values(); 
output_text(); 
fprintf(stdout,"."); 

SampIeNumber++; 
PosX++; 

if(PosX=5) 
{ 

PosY++; 
PosX=0; 

1 

fprintf(stdout, " Done\a"); 

if(SampleNumber > 25) 
break; 

if(check = 2) 
break; 

1 

close_driver(); 

return 0; 

int initialize_text(void) 
( 

fprintf(fp, "\nTcst NumberVX LocationUY LocationURun 
Number\tVlVV2\!V3W4\tCl\rC2\tC3\lC4\n-); 

return 0; 
1 

int Output text(void) 
( 

fprintf(fp. ^n%cI\J9bd\t%d\t%d\t%f\t%i\t%f\t%f\t%<i\t%d\t%d\t%d". 
SampleNumber. PosX. PosY, RunNumber. Voltage[0]. Voltage[l], Voltage[2], 
Voltage[3], Counts[0], CountsfJ], Counts(2). Counls[3]); 

return 0; 
1 

int get_values(void) 
( 

int a = 0; 

for (a=0; a < 4; a++) 

nErr); 

// Read channel 0 at gain 1; store sample in Advalue 
if((nErr = K_ADRead(hDev 1600, a, 0, &wADvaI)) != 0) 
{ 

putchar(7); 
printf("Error %X in K_ADRead operation.", 

exit(l); 

(wADval»4)&0xfff); 

// Strip channel tag and display ADvalue 
// printf("A/D value from channel 0 is: %x\n". 

Counts[a] = (wADval»4)&0xfff; 
Voltage[a] = ((((double)Counts[a]) - 2048) * (20)) / (4096); 

return 0; 

int initialize A2D(void) 
{ 

// Initialize the hardware and software 
if(( nErr = K_OpenDriver( "DAS1600", "dasl600.CFG", &hDrvl600)) != 0) 

putchar(7); 
printf("Error %X during K_OpenDriver", nErr); 
exit(nErr); 

) 

// Establish communication with the driver through a device handle 
if(( nErr = K_GetDevHandle(hDrv 1600, 0, &hDevl600)) != 0) 

putchar(7); 
printf("Error %X during K_GetDevHandle ", nErr); 
exit(l); 

1 
return 0; 

int close_driver(void) 
{ 

) 

// Close the Driver and Release All Resources 
K_CloseDriver(hDrvl600); 

return 0; 

int check_ESC(void) 
( 

int in; 
if (kbhitO) 

{ 
if((in = geich()) = \xlB') 

return 1; 
} 

else 

1 

int check_Q(void) 
{ 

int in; 
if (kbhitO) 
( 

1 
else 

int checker(void) 
{ 

int in; 
if (kbhitO) 

retum 0; 

if((in = getch()) = \x5r) 
retum 1; 

return 0; 

if ((in=getch()) = -\x!B') 
retum 1; 

if(in=\x51') 
return 2; 

return 0; 

void clear_kb(void) 
// clears stdin of any waiting characters. 

charjunk[80]; 
gets (junk); 

^* •a«*****«*******************«***************************«*******»*'* 

Program: Testbed Code 
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Füe: 

Function: 

Description: 

Author: 

Environment: 

Notes: 
Board 

tbedlb.c 

main function listing 

Reads 10 points in rapid succession at each point on the 
grid (1-81) 

Brian Fitch (BF) 

Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95 
DOS 6.0. 

For use with Keithley DAS-1600 

3/10/98     (BF) Revisions: 1.00 3/10/98     (BF) Initial Release 
««♦««»»»♦»»♦••«♦»A************************************************* 

ffinclude <stdio.h> 
ffinclude "testbed.h" 
ffinclude "dasdecl.h" 
'/«include "dasloOO.h" 

void clear_kb(void); 
int initialize_text(void); 
int check_ESC(void); 
int check_Q(void); 
int checker(void); 
int get_values(void); 
int output_text(void); 
int close_driver(void); 
int initialize_A2D(void); 

int SampleNumber=l; 
int PosX=0; 
int PosY=0; 
double Voltage[4]; 
int Counls[4]; 
int RunNumber=l; 

DWORD hDrvl600; 
DWORD hDcvl600; 
ihort nErr. 
WORD wADval; 

FILE -fp; 
:har filename(20]; 
int check=0; 

// Sample position number (I -64) 
// X-coordinate on grid 
// Y-coordinate on grid 

// Converted Voltage reading 
// Counts reading from a2d card 

//Run Number of data at a single point (1-1 v) 

II Driver Handle 
// Device Handle 

// Function return error flag 
// Storage for A/D value 

// File open error flag 
// Temp value for file name 

// Function return interrupt flag 

int main(void) 
I 

clear_kb(): 

// open a file for storing data 
puts("Enter a name for the file"); 
gets(filename); 
if((fp=fopen(fi!ename, "w")) = NULL) 

fprintf(stderr, "Error opening file %%.". filename); 
exit(l); 

} 

initialize_text(); 
fprintf(stdout, "\nText successfully initialized"); 

initialize_A2D(); 
fprintf(stdout, "ÄnPress ESC to begin gathering data"); 
fprintf(stdout, "\nPress Q to Quit"); 

for(;;) 
f 

if((check = checker()) == 1) 
{ 

", SampleNumber, PosX, PosY); 

RunNumber++) 

fprintf(stdout, "XnGathering Sample 9fcd (%d, %d) 

for(RunNuiTibcr=l; RunNumber<ll; 

{ 

get_values(); 
output_text(); 
fprintf(stdout,"."); 

SampleNumber++; 
PosX++; 

if(PosX==9) 
{ 

PosY++; 
PosX=0; 

) 

fprintf(stdout, " Done\a"); 

if(SampleNumber > 81) 
break; 

if(check = 2) 
break; 

close_driver(); 

return 0; 
) 
int initialize_text(void) 
I 

fprintf(fp, "\nTest NumberttX LocationVY LocationVRun 
NumberMVl\tV2\tV3\tV4\tClVtC2\tC3\tC4\n"); 

return 0; 
I 

int output_text(void) 

fprintf(fp, ■\n%d\t9bd\t%d\t%d\t%f\t%f\t%f\t%f\l%d\t%d\t%d\t%d". 
SampleNumber. PosX. PosY. RunNumber. Voltage[0]. Voltage[l]. Voltage[2]. 
Voltagc(3]. Counts(0], Counts[l], Counts(2], Counts[3]); 

return 0; 
I 

int get_values(void) 
{ 

int a = 0; 

for (a=0; a < 4; a++) 

nErr); 

.'/ Read channel 0 at gain 1; store sample in Advalue 
if((nErr = K_ADRead(hDev 1600. a. 0, &wADval)) != 0) 
{ 

putchar(7); 
printf("Error %X in K_ADRead operation.". 

1 
exit(l); 

// Strip channel tag and display ADvalue 
// printf("A/D value from channel 0 is: %x\n", 

(wADval»4)&0xfff); 

1 

) 

return 0; 

Counts[a] = (wADval»4)&0xfff; 
Voltage[a] = ((((doub!e)Counts[a]) - 2048) • (20)) / (4096): 

int initialize_A2D(void) 

// Initialize the hardware and software 
if(( nErr = K_OpenDriver( "DAS1600". "dasl600.CFG", &hDrvl600)) != 0) 
{ 

putchar(7); 
printf("Error %X during K_OpenDriver", nErr); 
exit(nErr); 
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// Establish communication with the driver through a device handle 
if(( nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0) 

putchar(7); 
printf("Error %X during K_GetDevHandle ", nErr); 
exit(l); 

) 
return 0; 

int close_driver(void) 
( 

I 

II Close the Driver and Release All Resources 
K_CloseDri verfhDrv 1600); 

return 0; 

int check_ESC(void) 
{ 

int in; 
if(kbhitQ) 

if((in = getch()) = \xlB') 
return 1; 

I 
else 

I 

int check_Q(void) 
( 

int in; 
if (kbhit()) 

} 
else 

int checker(void) 
I 

int in; 
if (kbhitQ) 
( 

return 0; 

if ((in = getch()) = VST) 
return 1; 

return 0; 

if((in=getch()) = \xlB') 
return 1; 

if(in=\x51') 
return 2; 

return 0; 

void clear_kb(void) 
'/ clears stdin of any waiting characters. 

charjunk[80]; 
gets(junk); 

***** 

Program: 

file: 

Function: 

Description: 

between readings 

Author: 

Testbed Code 

tbed2b.cpp 

main function listing 

Reads 10 points in succession at each point on the 
grid (1-81) with a 1 second delay 

Brian Fitch (BF) 

Environment: 

Notes: 
Board 

Microsoft Visual C++ 5.0, 486766 16mb RAM Windows 95 
DOS 6.0. 

For use with Keithley DAS-1600 

Revisions: 1.00 3/10/98     (BF) ************************************************ 
******/ 

#include <afxwin.h> 
#include <stdio.h> 
#include <winbase.h> 
#include "testbed.h" 
#include "dasdecl.h" 
/«include "dasl600.h" 

void clear_kb(void); 
int initializc_text(void); 
int check_ESC(void); 
int check_Q(void); 
int checker(void); 
int get_values(void); 
int output_text(void); 
int close_driver(void); 
int initialize_A2D(void); 

int SampleNumber=l; 
int PosX=0; 
int PosY=0; 
double Voltage[4]; 
int Counts(4]; 
int RunNumber=l; 

DWORD hDrvl600; 
DWORD hDevI600; 
short nErr; 
WORD wADval; 

FILE «fp; 
char filename[20]; 
int check=0; 

*********** Initial Release ***•««*« 

// Sample position number (1-64) 
// X-coordinate on grid 
// Y-coordinate on grid 

// Converted Voltage reading 
// Counts reading from a2d card 

// Run Number of data at a single point (1-10) 

// Driver Handle 
// Device Handle 

// Function return error flag 
// Storage for A/D value 

// File open error flag 
// Temp value for file name 

// Function return interrupt flag 

int main(void) 
( 

clear_kb(); 

// open a file for storing data 
puts("Enter a name for the file"); 
gets(filename); 
if((fp=fopcn(filename, "w")) == NULL) 

fprintf(stderr, "Error opening file %s.". filename); 
exit(l); 

initialize_text(); 
fprintf(stdout, "ViText successfully initialized"); 

initialize_A2D(); 
fprintf(stdout, "\nPress ESC to begin gathering data"); 
fprintf(stdout, "\nPress Q to Quit"); 

for(;;) 
{ 

if((check = checker()) = I) 
{ 

fprintf(stdout, "\nGathering Sample %d (%d. %d) 
", SampleNumber, PosX, PosY); 

for(RunNumber=I; RunNumber<l 1; 
RunNumber++) 

{ 
get_values(); 
output_text(); 
fprintf(stdout,"."); 
Sleep(lOOO); 

SampleNumber++; 
PosX++; 
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if(PosX==9) 
{ 

PosY++; 
PosX=0; 

) 
fprintf(stdout, " Done\a"); 

if(SamplcNumber > 81) 
break; 

) 
if(check = 2) 

break; 
1 
close_driver(); 

return 0; 
I 

inl initialize_text(void) 

fprintf(fp, "\nTesl NumberUX Location\tY Location\tRun 
NumberMVlVV2\tV3\lV4\tCl\tC2VC3\tC4\n"); 

return 0; 
1 
im output_text(void) 

fprintf(fp, "\n%dV%d\t%d\l%d\r%f\t%r\t%f\t%r\t%d\t%d\l%d\t9bd_, 
SampleNumber. PosX. PosY, RunNumber, VoltagefO], VoItage[!]. Voltage[2]. 
VoItage[3], Counts[0], Counts[l], Counts[2], Counts[3]); 

return 0; 

int get_values(void) 
( 

int a = 0; 

for (a=0; a < 4; a++) 
( 

// Read channel 0 at gain 1; store sample in Advalue 
if((nErr = K_ADRead(hDevl600, a, 0, &wADval)) != 0) 
( 

putchar(7); 
printf("Erit)r %X in K_ADRead operation.". 

exit(l): 
nErr); 

;wADval»4)&0xfff); 

// Strip channel tag and display ADvaluc 
// printf("A/D \alue from channel 0 is: %x\n". 

Counts[a] = (v. ADval»4)&0xfff; 
Voltagefa] = C?!double)Counts[a]) - 2048) • (20)) / (4096); 

return 0; 
) 
int initialize_A2D(void) 
( 

// Initialize the hardware and software 
if(( nErr = K_OpenDriver( "DAS1600", "dasl600.CFG", &hDrvI600)) != 0) 
{ 

putchar(7); 
printfCError %X during K_OpenDriver", nErr); 
exit(nErr); 

) 

// Establish communication with the driver through a device handle 
if« nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0) 
{ 

putchar(7); 
printf("Error %X during K_GetDevHandle ", nErr); 
exit(l); 

1 

I 
return 0; 

int cIose_driver(void) 
( 

// Close the Driver and Release All Resources 
K_eioseDriver(hDrv 1600); 

) 
return 0; 

int check_ESC(void) 
{ 

int in; 
if (kbhitO) 

{ 
if((in = getch()) = ,\xlB') 

return 1; 
) 

else 
return 0; 

return 0; 
) 
int check_Q(void) 
{ 

int in; 
if (kbhitO) 
{ 

I 
else 

return 0; 

if((in = getch()) = \x51') 
return 1; 

return 0; 

I 
int checker(void) 
{ 

int in; 
if (kbhitO) 
( 

if((in=getchO)="\xlB-) 
return 1; 

if(in=\x5D 
return 2; 

return 0; 
) 
return 0; 

) 
void clear_kb(void) 
// clears stdin of any waiting characters. 
{ 

char junk[80]; 
gets (junk); 

) 

/*****«****«**«*•***•**********•*************•••***********•*•****** 
***** 

Program: 

Fde: 

Function: 

Description: 

Author: 

Environment: 

Notes: 
Board 

Testbed Code 

tbed3b.c 

main function listing 

Reads a single set of voltages at each point on the 
grid (1-81). Repeats 10 through 

Brian Fitch (BF) 

Microsoft Visual C++ 5.0,486/66 16mb RAM, Windows 95 
DOS 6.0. 

For use with Keithley DAS-1600 
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Revisions: ************************* 
******/ 

include <stdio.h> 
ffinclude "testbed.h" 
Wnclude "dasdecl.h" 
'/«include "dasl600.h" 

void cIear_kb(void); 
int initiaIize_text(void); 
int check_ESC(void); 
int check_Q(void); 
int checker(void); 
int get_values(void); 
int get_vaIues2(void); 
int output_text(void); 
int output_text2(void); 
int close_driver(void); 
int initialize_A2D(void); 

int SampleNumber=l; 
int PosX=0; 
int PosY=0; 
double VoItage[4]; 
double VoItage2[82][ll][4]; 
int Counts[4]; 
intCounts2[82][ll][4]; 
int RunNumber=l; 

DWORD hDrvl6O0; 
DWORD hDev 1600; 
ihort nErr; 
WORD wADval; 

RLE *fp; 
:har filename[20); 
int check=0; 

int main(void) 

1.00 3/10/98     (BF) Initial Release ***************************************** 

// Sample position number (1-64) 
// X-coordinaie on grid 
// Y-coordinate on grid 

// Converted Voltage reading 

// Counts reading from a2d card 

// Run Number of data at a single point (1 -10) 

// Driver Handle 
// Device Handle 

// Function return error flag 
// Storage for A/D value 

// File open error flag 
// Temp value for file name 

// Function return interrupt flag 

( 
clear_kb(); 

// open a file for storing data 
puts("Enter a name for the file"); 
gets( filename); 
if((fp=fopen(filename, "w")) = NULL) 
{ 

fprintf(stderr, "Error opening file %s.". filename); 
exit(l); 

} 

initialize_text(); 
fprintf(stdout, "\nText successfully initialized"); 

initialize_A2D(); 
fprintf(stdout, "\nPress ESC to begin gathering data"); 
fprintf(stdout, "\nPress Q to Quit"); 

for(;;) 

if((check = checker()) = 1) 
{ 

fprintf(stdout, "\nGathering Sample %d.%d (%d, 
%d) ", SampleNumber, RunNumber, PosX, PosY); 

get_values2(); 

SampleNumber++; 
PosX++; 

if(PosX==9) 
{ 

PosY++; 
if(PosY==9) 

PosY=0; 
PosX=0; 

fprintf(stdout, "... Done\a"); 

10)) 

1 
if(check ; 

if((SampleNumber > 81) && (RunNumber = 

break; 
if(SampleNumber > 81) 
{ 

RunNumber++; 
SampleNumber=l; 

= 2) 
break; 

I 

close_driver(); 
output_text20; 

return 0; 

int initialize_text(void) 
I 

fprintf(fp, "\nTest NumberVX Location\tY Location\tRun 
Number\tVl\tV2\tV3\tV4\tCl\tC2\rC3VC4\n"); 

return 0; 
) 

int output_text(void) 
( 

fprintf(fp, "\n%d\t%d\t%d\t%d\t%f\t%f\t%f\t%f\t%d\t%d\t%<l\t%d", 
SampleNumber, PosX, PosY, RunNumber, Voltage[0], Voltage[l], Vokage[2J 
Voltage[3], Counts[0], Counts[l], Counts[2], Counts[3]); 

return 0; 

int output_text2(void) 
( 

intSN=l,RN=l; 

PosX=PosY=0; 

for(SN=l;SN<82;SN++) 
( 

for(RN=l; RN<11; RN++) 
( 

fprintf(fp, 
"\n%dM%d\t%d\t%d\t%f\t%f\t%f\t%f\t%d\t9bd\l9M\t%d", SN, PosX, PosY, RN 
Voltage2[SN][RN][0], Voltage2(SN][RN][l], Voltage2[SN][RN](2], 
Voltage2[SN][RN][3], Counts2[SN][RN][0], Counts2[SN][RN][l], 
Counts2[SN][RN][2].Counts2[SN][RN][3]); 

) 

PosX++; 

if(PosX=9) 
{ 

PosY++; 
if(PosY==9) 

PosY=0; 
PosX=0; 

I 
return 0; 

int get_values(void) 
{ 

int a = 0; 

for (a=0; a < 4; a++) 
{ 

nErr); 

// Read channel 0 at gain 1; store sample in Advalue 
if((nErr = K_ADRead(hDevl600, a, 0, &wADval)) != 0) 
{ 

putchar(7); 
printf("Error %X in K_ADRead operation", 

exit(l); 
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// Strip channel tag and display ADvalue 
// printf("A/D value from channel 0 is: %x\n", 

(wADval»4)&0xfff); 

Counts[a] = (wADval»4)&0xfff; 
Voltage(a] = ((((double)Counts[a]) - 2048) * (20)) / (4096); 

return 0; 
} 

int get_va]ues2(void) 
( 

int a = 0; 

for (a=0; a < 4; a++) 
I 

nErr); 

// Read channel 0 at gain 1; store sample in Advalue 
if((nErr = K_ADRead(hDevl600, a, 0. &wADval)) != 0) 
{ 

putchar(7); 
printf("Error %X in K_ADRead operation.", 

exit(l); 

// Strip channel tag and display ADvalue 
// printf("A/D value from channel 0 is: %x\n", 

(wADval»4)&0xfff); 

Counts2[SampleNumber](RunNumber][a] = 
(wADval»4)&0xfff; 

Vo!tage2[SampleNumbcr][RunNumber][a] = 
[(((double)Counls2[SarnpleNumber][RunNurnber][a]) - 2048) * (20)) / (4096); 

) 

-•turn 0; 

.r.maIize_A2D(-void) 

// Initialize the hardware and software 
if(( nErr = K_OpenDriver( "DAS16O0". "das 1600.CFG", &hDrvl600)) != 0) 
I 

putchar(7); 
printfCError %X during K_OpenDriver", nErr); 
exit(nErr); 

) 

// Establish communication with the driver through a device handle 
if(( nErr = K_GelDevHandle(hDrvl600. 0, &hDevl600)) != 0) 
{ 

putchar(7); 
printf("Error %X during K_GetDevHandIe ", nErr); 
exit(I); 

) 
return 0; 

} 

int close_driver(void) 
{ 

) 

// Close the Driver and Release All Resources 
K_CloseDriver(hDrvl600); 

return 0; 

int check_ESC(void) 
( 

int in; 
if(kbhitO) 

{ 
if((in = getch()) = \xlB') 

return 1; 

else 
return 0; 

int check_Q(void) 
{ 

int in; 
iffkbhitO) 
{ 

else 

if ((in = getchO) = V51') 
return 1; 

return 0; 
} 

int checker(void) 
{ 

int in; 
if (kbhitO) 
{ 

I 

if ((in=getch()) = "VxlB') 
return 1; 

if(in=V51*) 
return 2; 

return 0; 

void clear_kb(void) 
// clears stdin of any waiting characters. 
{ 

charjunk[80]; 
gets (junk); 

) 

/••••**••**•••••**«••** 
*•*** 

Program: 

Rle: 

Function: 

Description: 

.25. .5. .75. 1) 

Author: 

Environment: 

I**«««*«*«*****«*******«*«*******«« 

Testbed Code 

Height.c 

main function listing 

Notes: 
Board 

Reads 10 points in rapid succession at each point on the 

grid (1-25) at 4 different heights (0, 

Brian Fitch (BF) 

Microsoft Visual C++ 5.0, 486766 16mb RAM. Windows 95 
DOS 6.0. 

For use with Keithley DAS-1600 

Revisions: 1-00 3/10/98     (BF) Initial Release 

«include <stdio.h> 
«include <stdlib.h> 
«include <conio.h> 
«include "testbed.h" 
«include "dasdecl.h" 
//«include "das 1600.h" 

void clear_kb(void); 
int initiaIize_text(void); 
int check_ESC(void); 
int check_Q(void); 
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int checker(void); 
int get_values(void); 
int output_text(void); 

int SampleNumbcr= 1; 
int PosX=0; 
int PosY=0; 
double Voltage[4]; 
intCounts[4]; 
int RunNumbcr=I; 
double height=0.0; 

DWORD hDrvl600; 
DWORD hDevlöOO; 
»hört nErr: 
WORD wADval; 

RLE *fp; 
:har filename[20]; 
int check=0; 

int main(void) 

// Driver Handle 
// Device Handle 

// Function return error flag 
// Storage for A/D value 

{ 
clear_kb(); 

puts("Enter a name for the file"); 
gets(filename); 
if((fp=fopen(filename, "w")) = NULL) 
{ 

fprintf(stderr, "Error opening file %s", filename); 
exit(l); 

initialize_text(); 
fprintf(stdout. "\nText successfully initialized"); 
fprintf(stdout. "ViPress ESC to begin gathering data"); 

for(;;) 
I 

if((check = checkerO) == 1) 
( 

fprintf(stdout. "\nGathering Sample %d (%d. %d. 
%f) ". SampleNumbcr. PosX, PosY, height); 

for(RunNumber=l; RunNumber<Il; 
RunNumber++) 

{ 
get_valucs(); 
output_text(); 
fprintf(stdout,"."); 

SampleNumbcr++; 
PosX++; 

if(PosX=5) 
{ 

1 

PosY++; 
PosX=0; 
if(PosY = 5) 

PosY=0; 

{ 

if(check = 2) 
break; 

fprintf(stdout, " Done\a"); 

if((SampleNumber > 25) & (height = 1.0)) 
break; 

if(SampleNumber > 25) 

height = (height + .25); 
SampleNumber=l; 

1 

int initialize_text(void) 
{ 

fprintf(fp, "\nTest NumberttX Location\tY Location\tZ Location\tRun 
Number\tVlVV2\tV3\lV4\tCl\tC2\tC3\tC4\n"); 

return 0; 
) 

int output_text(void) 
I 

fpnntf(fp, "\n%d\t%d\t%d\t%f\t%d\t%f\t%f\t%f\£%f\t%d\t%d\t%d\t%d", 
SampIeNumber, PosX, PosY, height, RunNumber, VoltagefO], Voltage[l] 
Voltagc[2], Voltage[3], Counts[0], Counts[ 1 ], Counts[2], Counts[3]); 

return 0; 

int get_values(void) 
I 

int a = 0; 

// Initialize the hardware and software 
if(( nErr = K_OpenDriver( "DAS1600". "daslöOO.CFG", &hDrvl600)) != 0) 

putchar(7); 
printf("Error %X during K_OpenDriver", nErr); 
exit(nErr); 

// Establish communication with the driver through a device handle 
if(( nErr = K_GetDevHandle(hDrvl600, 0. &hDevl600)) != 0) 

putchar(7); 
printf("Error %X during K_GetDevHandle ", nErr)- 
exit(l); 

) 

for (a=0; a < 4; a++) 

// Read channel 0 at gain I; store sample in Advalue 
if((nErr = K_ADRead(hDevl600, a, 0, &wADval)) != 0) 

putchar(7); 
printfCError %X in K_ADRead operation.". 

return 0; 

nErr); 
exit(l); 

// Strip channel tag and display ADvalue 
// printf("A/D value from channel 0 is: %x\n", 

(wADva!»4)&0xfff); 

Counts[a] = (wADval»4)&0xfff; 
Voltage[a] = ((((double)Counts[a]) - 2048) * (20)) / (4096): 

// Close the Driver and Release All Resources 
K_CloseDriver(hDrv 1600); 

return 0; 
) 

int check_ESC(void) 
{ 

int in; 
if(kbhit()) 

if ((in = getch()) = \xlB') 
return 1; 

else 

} 

int check_Q(void) 
( 

int in; 
if (kbhitO) 
{ 

return 0; 

if ((in = getchQ) = V51') 
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) 
else 

) 

return 1; 

return 0; 

int checker(void) 
t 

int in; 
if (kbhitö) 
I 

if((in=gelch()) = \xlB') 
return 1; 

if(in=\x51') 
return 2; 

return 0; 

} 

void clear_kb(void) 
// clears stdin of any waiting characters. 
{ 

char junk[80]; 
gets (junk); 

1 
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G Complete Code for thesis 

The following are the two library files for the finger walker interface: finger.cpp 
and finger.h. 

****** 

Program: Testbed Code 

File: testbed.h 

Function: Header for all testbed code 

Description: 

Author: Brian Fitch (BF) 

Environment: Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95 
DOS 6.0. 

Notes: 
testbed3.c 

For use with testbed.c, testbed I.e. testbed2.c, and 

Revisions: 1.00 3/10/98      (BF) Initial Release ******************************************************************* 

#include "stdafx.h" 
#include <stdio.h> 
#include <conio.h> 
//#include <bios.h> 
#include <math.h> 
^include <stdlib.h> 
^include <windows.h> 
#include <string.h> 
#inc!ude "finger.h" 

//DAS-1600/1400 driver include file 
^include "dasdecl.h" 

// Driver Handle 
// Device Handle 
// Function return error (lag 
// Storage for A/D value 

//error = 0 :: no errors 

/*  data[0] = xl 

DWORD hDrv!600; 
DWORD hDevl600; 
short nErr; 
WORD wADval; 

int error = 0; 
// error = 1 :: system error 

int Counts[4]; 
double data[4]; 

dataflj = yl 

data[2] = x2 

data[3] = y2 
*/ 

double coords [4]; 

double old_coords[SAVE][4]; 

struct coord first, second, old_first={2,2), old_second=(2,2); i 
(2,2) is the center of a 4 by 4 pad 

// lcokup[X][Y] 
struct coord lookup_l[ROW][COL)={ 
{ {0,0), {0,0.5), (0,1), {0,1.5), {0,2), {0,2.5), (0,3), {0,3.5), {0,4)), 
{ {0.5,0), {0.5,0.5), {0.5,1}, {0.5,1.5), {0.5,2), {0.5,2.5}, (0.5,3), {0.5,3.5), 
{0.5,4}), 
{ {1,0}, {1,0.5). {1,1}. {1,1.5}, {1.2}. {1,2.5}, {1,3}, {1,3.5}, {1,4)), 

{ (1.5,0), (1.5.0.5), (1.5,1), (1.5,1.5). (1.5,2), (1.5,2.5), {1.5,3}. {1.5.3.5}, 
(1.5.4)}. 
{ (2,0). (2.0.5). {2.1). {2.1.5}. (2.2). (2.2.5). {2,3}, (2,3.5). (2,4)}, 
( (2.5,0). (2.5,0.5), {2.5.1), {2.5.1.5). (2.5,2), {2.5.2.5), (2.5.3), {2.5.3.5}, 
(2.5,4)). 
{ (3,0), (3,0.5). (3.1), (3,1.5). (3,2). (3,2.5). {3.3}. {3,3.5}, {3,4}), 
{ (3.5,0), (3.5,0.5), (3.5,1), (3.5,1.5), (3.5,2), (3.5,2.5), (3.5,3), (3.5.3.5), 
(3.5.4)). 
( (4.0), {4.0.5}. {4,1). {4,1.5). (4.2), (4,2.5). (4.3), (4.3.5), (4,4)), ); 

struct coord lookup_2[ROW][COL]=( 
{ (0,0), (0,0.5). (0.1), (0.1.5), (0,2). (0.2.5), (0,3), (0,3.5), {0,4)), 
{ (0.5,0). (0.5.0.5). (0.5,1). (0.5.1.5), (0.5.2), (0.5,2.5), (0.5,3), (0.5,3.5). 
{0.5.4)). 
{ (1.0). {1,0.5}, {1,1). {1.1.5}, (1,2), {1,2.5), (1.3), {1.3.5), {1,4)), 
{ (1.5,0}. (1.5,0.5). (1.5,1). {1.5.1.5), {1.5,2}. {1.5.2.5), (1.5.31. {1.5.3.5}. 
{1.5.4)). 
{ (2.0). (2.0.5). (2.1), (2.1.5), (2,2). (2,2.5). (2.3). (2,3.5), (2,4)}, 
{ (2.5,0), (2.5.0.5), (2.5,1), (2.5,1.5), (2.5,2), (2.5,2.5), (2.5.3), (2.5.3.5). 
{2.5.4}). 
{ (3,0), (3,0.5), (3,1), (3.1.5). (3,2). {3.2.5}. (3,3), (3,3.5). (3.4)), 
( {3.5.0). {3.5.0.5}. {3.5.1). {3.5.1.5}. {3.5,2}, {3.5.2.5}, {3.5,3). (3.5.3.5). 
(3.5.4)}. 
( (4,0), {4.0.5}, (4.1). (4.1.5). {4.2). (4,2.5), (4,3), (4,3.5). (4,4)), ); 

double lookup_Fl_X[101]=(4. 3.8, 3.5, 3.4, 3.3, 3.2, 3.1, 3, 3, 2.9, 2.9. 2.8, 2.8, 
2.7, 2.7. 2.6. 2.6. 2.5. 2.5, 2.5, 2.5. 2.4, 2.4, 2.4, 2.3, 2.3, 2.2, 2.2. 2.1, 2.1, 2.1, 2, 2, 
2,2.2, 1.9, 1.9, 1.9. 1.9, 1.9, 1.8, 1.8, 1.8, 1.8, 1.7, 1.7. 1.7, 1.7, 1.6, 1.6, 1.6. 1.6. 
1.5, 1.5, 1.5. 1.5, 1.5. 1.5. 1.4, 1.4, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3. 1.3. 1.3, 1.2, 1.2, 
1.2. 1.2, 1.2, 1.2, 1.2. 1.1. 1.1, 1.1. 1.1, 1.1, 1.1, 1.1, 1. 1, 1, 1, 1, 1, 1, .9, .8. .7, .6, 
.5. .4, .3..2. .1.0); 
double lookup_Fl_Y(101]={4. 3.8. 3.6, 3.5. 3.4, 3.2, 3, 3, 2.9. 2.9. 2.8, 2.8, 2.7, 
2.7. 2.6. 2.6, 2.5. 2.5. 2.5, 2.4. 2.4. 2.3, 2.3. 2.3, 2.2, 2.2, 2.2, 2.1, 2.1, 2.1, 2, 2, 2, 2. 
1.9, 1.9. 1.9, 1.9. 1.9, 1.8, 1.8, 1.8. 1.8. 1.7. 1.7, 1.7, 1.7, 1.7, 1.6, 1.6, 1.6, 1.6, 1.6. 
1.5. 1.5. 1.5, 1.5. 1.5. 1.5. 1.4. 1.4, 1.4, 1.4, 1.4, 1.4, 1.3. 1.3, 1.3, 1.3, 1.3, 1.3. 1.2. 
1.2. 1.2, 1.2. 1.2. 1.2. 1.2. 1.2, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1. 1, 1. 1. 1, 1, 1, .9, 
.8. .7. .6, .5. .4, .2.0); 
double lookup_F2_X(101]={0, .5. 1. 1. 1.2, 1.2, 1.4, 1.4, 1.5, 1.5, 1.5. 1.6, 1.6, 1.6, 
1.8, 1.8, 1.8, 1.9. 1.9, 1.9. 2. 2. 2. 2, 2.2. 2.2, 2.2, 2.2, 2.2, 2.3, 2.3, 2.3, 2.3. 2.3, 2.3. 
2.5, 2.5. 2.5, 2.5. 2.5. 2.7. 2.7. 2.7. 2.7, 2.7, 2.7. 2.7. 2.7. 2.8. 2.8, 2.8, 2.8. 2.8. 2.8. 
2.8, 2.8. 2.8. 3. 3. 3. 3. 3. 3, 3. 3. 3.2, 3.2, 3.2. 3.2, 3.2, 3.2, 3.3, 3.3, 3.3. 3.3. 3.3. 
3.3.3.3. 3.3. 3.3. 3.3, 3.3, 3.3. 3.4, 3.4, 3.4, 3.4, 3.4, 3.4. 3.4. 3.4. 3.4. 3.4. 3.5.3.5, 
3.5,3.5.3.8.3.8.3.8.4); 
double lookup_F2_Y[I0i]=(0, .5, .5, .8, .8, 1, 1, 1, 1.2, 1.2, 1.2, 1.3. 1.3, 1.3, 1.3, 
1.5.1.5, 1.5, 1.7, 1.7, 1.7, 1.7, 1.8, 1.8, 1.8,1.8, 1.8,2, 2, 2, 2. 2.1. 2.1, 2.1, 2.1. 2.1. 
2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.3, 2.3, 2.3, 2.3. 2.3. 2.5, 2.5, 2.5, 2.5, 2.5, 2.6, 2.6, 2.6, 
2.6, 2.6, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.9, 2.9, 2.9, 
2.9, 2.9, 2.9, 2.9.2.9, 3, 3, 3, 3, 3. 3, 3, 3, 3.2. 3.2,3.2, 3.2, 3.2, 3.2, 3.4, 3.4. 3.4, 
3.4,3.4,3.5,3.8.4); 

double lookup_Fl_X2(101]={4, 3.8, 3.7, 3.5, 3.4, 3.2, 3.2, 3, 3, 3. 2.8, 2.8, 2.8, 2.8, 
2.6,2.6,2.6,2.5, 2.5, 2.5, 2.5, 2.3,2.3, 2.3,2.3, 2.2, 2.2, 2.2,2.2, 2, 2, 2, 2, 2. 2, 2, 
1.8,1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.5,1.5, 1.5, 1.5, 
1.5, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 
1.2,1.2, 1.2,1, 1, 1,1, 1, 1, 1, 1, 1, 1,0.8,0.8,0.8.0.8,0.7,0.7,0.7,0.7.0.5,0.5, 
0.5,0.2,0.2,0}; 
double lookup_Fl_Y2[101]=(4, 3.8, 3.7, 3.5, 3.4, 3.2, 3, 3, 2.8, 2.8, 2.8, 2.7, 2.7, 
2.7, 2.5, 2.5, 2.5, 2.5. 2.3, 2.3, 2.3, 2.3, 2.3,2.2, 2.2, 2.2, 2.2, 2, 2, 2, 2, 2, 1.8. 1.8, 
1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.7, 1.7. 1.7, 1.7, 1.7, 1.7, 1.7, 1.7. 1.7, 1.5, 1.5. 1.5, 
1.5, 1.5, 1.5. 1.5, 1.3, 1.3, 1.3,1.3, 1.3, 1.3,1.3, 1.3, 1.3, 1.3, 1.2, 1.2, 1.2, 1.2, 1.2, 
1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.8, 
0.8,0.5,0.5,0.5,0.2,0); 

struct coord lookup_Fl_X3f 11][11]=( 
{ {3,3}, (3,2.5), (3,2.25), (3,2), (3,1.75), {3,1.5}, {3,1.25}, (3,1.25), (3,1), 
(3.0.5), (3.0)}, 
{ (2.5,3), (2.5,2.5), {2.5,2.25), {2.5,2), {2.5,1.75}, {2.5,1.5}, {2.5,1.25), 
(2.5,1.25), (2.5,1), {2.5,0.5}, (2.5,0)}, 
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{ (2.25,3), (2.5,2.5). (2.5,2.25), (2.5,2). (2.5,1.75). (2.5.1.5). (2.5.1.25). 
(2.5,1.25). (2.5.1), (2.5,0.5), (2.5,0)), 
{ (2,3), (2,2.5), (2,2.25). (2,2). (2,1.75), (2,1.5). (2.1.25). (2,1.25). (2,1), 
(2,0.5). (2.0)). 
( (1.75,3), (1.75,2.5), (1.75,2.25), (1.75,2), (1.75,1.75), (1.75,1.5), 
(1.75,1.25), (1.75,1.25), (1.75,1). (1.75,0.5), (1.75,0)). 
( (1.5,3). (1.5,2.5). (1.5.2.25). (1.5,2), (1.5,1.75). (1.5,1.5). (1.5,1.25). 
(1.5.1.25), (1.5.1), (1.5,0.5). (1.5,0)). 

(1.25.3). (1.25,2.5), (1.25,2.25), (1.25,2), (1.25.1.75), (1.25.1.5). 
(1.25.1.25), (1.25,1.25), (1.25,1), (1.25,0.5), (1.25,0)), 
( (1.25,3), (1.25,2.5). (1.25.2.25), (1.25.2), (1.25.1.75). (1.25.1.5), 
(1.25,1.25), (1.25,1.25), (1.25,1), (1.25,0.5). (1.25.0)), 
( (1,3), (1,2.5), (1.2.25), (1.2), (1,1.75). (1.1.5), (1.1.25). (1.1.25). (1.1). 
(1,0.5), (1,0)), 
( (0.5.3). (0.5,2.5). (0.5,2.25), (0.5.2), (0.5,1.75). (0.5.1.5). (0.5.1.25), 
(0.5.1.25), (0.5,1), (0.5,0.5). (0.5,0)). 
( (0,3), (0.2.5). (0.2.25). (0,2), (0,1.75), (0.1.5), (0,1.25). (0.1.25). (0.1). 
(0,0.5).(0,0)) 

); 

/« From Vel2.c •/ 
double forward_multiplier = MAG_MULTI. tuming_multiplier = DIR_MULTI; 
double magnitude = 0, direction = (Pi / 2); 
double delta_X. delta_Y; 
double delta_Xl. delta_X2, delta_Yl, delta_Y2; 

double turning_offset = 0; 
//double magnitude_x = 0, magnitude_y = 0; 

inttype= 1; 

int DebugRunNumber=0; 
double DebugMotion=0; 

double TempVoltage(6][8][4] = { 
{ (2.6,6.2), (2,5.6.3). (2.4.6.4), (2.3.6.5). (2.2.6.6). (2.3.6.5). (2.4,6.4). 
(2,5,6.3)}, 
( (2.6,6.6), (2.5.6.5). (2.4.6.4), (2.3.6,3). (2.2.6.21. (2,2.6.2). (2.2,6.2). 
(2.2,6.2)). 
( (2,2,6.2). (2,3.6.31. (2.4,6,4). (2.5,6,5). (2.6.6,6). (2.5.6.5). (2.4.6,4), 
(2.3.6.3)). 
( (2,4,6.2). (2.4.6.3). (2.4.6.4), (2,4.6.5). (2.4.6.61. (2.4.6.5). (2.4.6.4). 
(2,4.6.3)1, 
( (2,2.6,4), 12,3.6.4). (2.4.6.4). (2.5.6.4}. (2.6.6.4). (2.5.6,4). (2.4.6.4). 
(2.3.6.4)), 
( (0.6.8.2). (1.5.7.31. (2.4,6.4). (3.3.5.5). (4.2,4.6). (3,3.5,5). (2.4,6,4), 
(1.5.7.3)) |; 

/* */ 
/* From a2d.c */ 
/• '/ 

int get_finger(void /* int run_number*/) 
{ 

initialize_A2D(); 

if(run_number=0) 
( 

//whiIe(error==TRUE) 
error = get_values(); 

//while(error==TRUE) 
error = lookup_coordinates(); 

store_last(); 
run_number++; 

//    while(error=TRUE) 
error = get_values(); 

//    while(error=TRUE) 
error = lookup_coordinates(); 

//    while(error==TRUE) 
error = get_mag_and_dir(); 

//    while(error==TRUE) 
error = store_last(); 

close_driver(); 

return error; 
) 
int get_finger_debug(void) 
{ 

int ab; 
I* 

if(nin_number==0) 

1 

for (ab=0; ab < 4; ab++) 

data(ab) = TempVoltage[DebugMotion][DebugRunNumber % 8][ab]; 
1 

DebugRunNumber++; 

whiIe(error==TRUE) 
error = lookup_coordinates(); 

for (ab=0; ab < 4; ab++) 
( 

8][ab); 
data[ab] = TempVoltage[((int)DebugMotion)][DebugRunNumber % 

DebugRunNumber++; 

//    while(error==TRUE) 
error = Iookup_coordinates2(); 

//    whi!e(error==TRUE) 
error = get_mag_and_dir(); 

// TRACE("new:,   (<fc.3f. %.30 C*>-3f. %.3f) ". first.x, first.y. 
old_first.x, old_first.y); 
//    while(error==TRUE) 

error = store_iasl(); 

return error; 

int a2d_coordinates(void) 
( 

int a = 0; 
// Initialize the hardware and software 
if« Err = DAS1600_DevOpen( "board 1.CFG". &NumOfBoards )) != 0) 
( 

putch (7); 
// printf("Error %X during DevOpcn", Err); 

exit(Err); 

// Establish communication with the driver through a device handle 
if(( Err = DAS1600_GetDevHandle( 0. &DAS1600)) != 0) 
( 

putch (7); 
printf("Error %X during GetDevHandle ", Err); 
exit(Err); 

1 

for (a=0; a < 4; a++) 
( 

// Read channel 0 at gain 1; store sample in Advalue 
if((Err = K_ADRead(DAS1600. a, 0, &AdvaIue)) != 0) 
( 

putch (7); 
printf("Error in K_ADRead operation."); 
exit(Err); 

} 

// Strip channel tag and display ADvalue 
// printf("A/D value from channel 0 is: %x\n", ADvalue»4); 
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datafa] = Advalue»4; 
data[a] = (((datafa]) - 2048) * (20)) / (4096); 

return 0; 

int lookup_coordinates(void) 

int a = 0; 
int temp[4]; 

for (a=0; a < 4; a++) 
{ 

if(data[a]<0) 
data[a]=0; 

if(data[a]>10) 
data[a]=10; 

) 
tempfa] = (intXIO'datafa]); 

// For a 2by2 lookup table 

//    first = Iookup_Fl_X3[temp[0]][temp[l]]; 
//    second = lookup_Fl_X3[temp[2]][tempf3]]; 

// For a lbyl lookup table 
coords[0] = first.x= lookup_Fl_X2[temp[0]]; 
coords[I] = first.y= lookup_Fl_Y2[temp[l]j; 
coords[2] = second.x= lookup_F2_X[temp[2]]; 
coords[3] = second.y= lookup_F2_Yftemp[3]j; 

TRACECV2C (%.3f - %d - %.2f) (%.3f - %d - %.2f) (%.3f - %d - %.2f) 
(%.3f - %d - %.2f) \n", data[0]. tempfO], first.x, data[l], temp[l], first.y, data[2], 
temp[2], second.x, data[3], tcmp[3], second.y); 

return 0; 
1 
int lookup_coordinates2(void) 
( 

int a = 0; 
int temp[4]; 

for (a=0; a < 4; a++) 
( 

temp[a] = (int)data[a); 

// For a 2by2 lookup table 

first = lookup_l(temp[0]][temp[l]]; 
second = lookup_2[temp[2]][temp[3]]; 

// For a lbyl lookup table 
coords[0] = first.x;//= lookup_Fl_X[temp[0]]; 
coordsfl] = first.y;//= lookup_Fl_Y[temp[l]]; 
coords[2] = second.x-//= lookup_F2_X[temp[2]]; 
coords[3] = second.y//= lookup_F2_Y(temp[3]]; 

return 0; 
) 
/* */ 
/* From Storpast.c */ 
/* •/ 

/* function stores the new values into the old values */ 

int store_last(void) 

o!d_first = first; 
old_second = second; 

/*    printf("\n new: (%i, %i) (%i, %i)", first.x, first.y, second.x, second.y); 

printf("\n old: (%i, %i) (%i, %i)", oId_first.x, old_first.y, old_second.x, 
old_second.y); 
*/ 

return 0; 
) 

/* */ 
/* From stormult.c */ 
/* */ 

/* function stores the new values into the array of old values */ 

int store_multipIe(void) 
{ 

int a = 0, b=0; 

old_first = first; 
oId_second = second; 

for(b=(SAVE-l); b>l ; b~) 
{ 

) 

for(a=0; a<4 ; a++) 
{ 

old_coords[b][a] = old_coords[b-I][a]; 
) 

for(a=0; a<4 ; a++) 

old_coords[0][a] = coords[a]; 

/*    printf("\n coords:%.4f, %.4f, %.4f. %.4r, coords[0], coords[l], coords[2], 
coords[3]); 

for(a=0; a<=4; a+-f) 
{ 

printf("\n 0: %.4f. %.4f, %.4f, %.4r, old_coords[c][0]. 
old_coords[c)(I], old_coords[c][2], old_coords[c][3]); 

return 0; 

/• */ 
/* From VeB.c •/ 
/* V 

/* function determines the instantaneous magnitude of the 
velocity vector and returns it as a double, also sets 
global variable magnitude to the correct value */ 

/* Type 0 = normal 
1 = nothing 
2 = backwards 
3 = right turn 
4 = left turn 

Finger 1 = fore finger (right hand), middle finger (left hand) 
Finger 2 = middle finger (right hand), fore finger (left hand) 

int get_mag_and_dir(void) 
{ 

double temp_X=0, temp_Y=0; 
double temp_XI=0, temp_X2=0; 
double temp_Yl=0, temp_Y2=0; 
double m = 0; 

temp_Xl = get_delta_Xl(); // determine x component of Finger 1 velocity 
temp_X2 = get_delta_X20; // determine x component of Finger 2 velocity 
temp_Yl = get_delta_Yl(); // determine y component of Finger 1 velocity 
temp_Y2 = get_delta_Y20; // determine y component of Finger 2 velocity 

if( temp_Yl > 0) // Finger 1 velocity in forward direction 
{ 

if( temp_Y2 > 0) 
Forward direction 

type = 1; 
Nothing 

// Both Finger 1 and Finger 2 in 

// mode of operation: 
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Normal 

stationary 

turn 
J 

else if( temp_Y2 < 0)// Finger 1 forward, finger 2 backwards 
type = 0; // mode of operation: 

else // if temp_Y2 = 0: Finger 1 forward. Finger 2 

type = 4; //mode of operation: left 

//Finger 1 velocity in backwards direction eIseif(temp_Yl < 0) 

if( temp_Y2 > 0) // Finger 1 backwards. Finger 2 
forwards 

type = 0; // mode of operation: 
Normal 

else if( temp_Y2 < 0)// Both finger 1 and Finger 2 backwards 
type = 2; // mode of operation: 

backwards 
else //iftemp_Y2 = 0: Finger 1 backwards, Finger 2 

stationary 
type = 4; // mode of operation: left 

turn 

else //iftemp_Yl =0: Finger 1 stationary 

if( temp_Y2 > 0) // Finger 1 stationary. Finger 2 
Forward 

type = 3; //mode of operation: Right 
Turn 

else if( temp_Y2 < 0)// Finger 1 stationary. Finger 2 backwards 
type = 3; //mode of operation: Right 

Turn 
else // if temp_Y2 = 0: Both Finger 1 and Finger 2 

stationary 
type = 1; // mode of operation: 

nothing 

temp_X = get_velocity_delta_X(type); // get velocity in x direction 
temp_Y = get_velocity_delta_Y(type): // get velocity in y direction 

switch (tvpe) 
{ 
case 0: 

( 

• (temp_Y)): 

// Normal 

magnitude ; ((lemp_X) * (temp_X)) + ((tcmp_Y) 

magnitude = sqrt(magnitude); 
magnitude = magnitude * forward_multiplier; 

if( temp_X != 0) 

if( temp_Y != 0) // 
atan2 returns an error if point at origin 

direction = atan2(lemp_Y, temp_X); 
// range of atan2 -pi to pi 

else 
direction = (-1) • PI/2; 

1 
else 

II 
temp_Y, direction); 

direction = (-1) « PI/2; 

TRACECDX %.21f DY %.21f DIR %.41f\n", temp_X, 

direction = direction - PI; 
actual walking in opposite direction of movement 

direction = fmod(direction + tuming_offset, (2*PI)); 

// 

II 
tuming_offset); 

case 1: 

} 
case 2: 

TRACEfadjDIR: %.4If Off: %.41f\n", direction, 

break; 

// Nothing 

magnitude = 0; 
direction = direction; // maintain old direction 

break; 

// Backwards 

{ 

* (temp_Y)); 
magnitude = ((temp_X) * (temp_X)) + ((temp_Y) 

magnitude = sqrt(magnitude); 
magnitude = magnitude * forward_muItiplier; 
magnitude = (-1.0) * magnitude; 

// TRACECTEMPS: (%.41f, %.4If) Mag: %.4lf, temp_X, 
temp_Y, magnitude); 

if( temp_X != 0) 
{ 

if( temp_Y != 0) // 
atan2 returns an error if point at origin 

direction = atan2(temp_Y, temp_X); 
// range of atan2 -pi to pi 

else 
direction = (-1) * PI/2; 

I 
else 

direction = (-1)* PI/2; 

direction = direction - PI; 
direction = fmod(direction + tuming_offset, (2*PI)); 

II 
turning_offset); 

case 3: 
( 

« (temp_Y)); 

case 4: 

• (temp_Y)); 

) 
default: 

{ 

TRACEfadjDIR: %.4If Off: %.41f\n", direction, 

break; 

// right turn 

magnitude = 0; 

if(temp_Y < 0) 

m = ((temp_X) * (temp_X)) + ((temp_Y) 

m = sqrt(m); 
) 
else 

m = 0; 
direction = ((m * tuming_mu!tip!ier) * PI): 
tuming_offset = fmod(tuming_offset - direction, (2'P1)); 
direction = fmod((PI / 2) + tuming_offset, (2"PI)); 

break; 

// left turn 

magnitude = 0; 

if(temp_Y < 0) 

m = ((temp_X) • (temp_X)) + ((temp_Y) 

m = sqrt(m); 
) 
else 

m=0; 
direction = ((m * tuming_multiplier) * PI); 
tuming_offset = fmod(direction + tuming_offset, (2*PI)); 
direction = fmod((PI / 2) + tuming_offset, (2"PI)); 

break; 

magnitude = 0; // 0 velocity 
direction = direction; // maintain previous direction 

return 0; 
) 

// determines the movement velocity depending on the type of operation 
double get_velocity_delta_X(int type) 
( 

switch (type)  " ' 
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case 0: // opposite vel-Normal 
I 

moving forward 

for velocity 

if(de!ta_Yl > 0) //Finger 1 

delta_X = de!ta_X2; // use finger 2 

else 
// Finger 2 moving forward 

for velocity 
delta_X = delta_Xl; // use finger 1 

break; 

case I: 

velocity = 0 

case 2: 

delta_X = 0; 

break; 

// both forward—Nothing 

// both backwards-Backwards 

deIta_X = ((delta_X 1 + delta_X2) 12);       II average 
movement of both fingers 

break; 

case 3: 
{ 

deIta_X = delta_X2; 
velocity to find turning factor 

break; 
] 

case 4: 
( 

delta_X = delta_Xl; 
velocity to find turning factor 

break; 
) 

default: 
( 

delta_X = 0; 
velocity = 0 

1 

return delta X; 

double get_velocity_delta_Y(int type) 
< 

switch (tvpe) 
( 
case 0: 

{ 

II \\ =0-RightTum 

// Y2 = 0--left turn 

// use finger 2 

// use finger 1 

11%. 

II opposite vel-Normal 

moving backwards 

to determine velocity 

if(delta_Yl < 0) 

else 

to determine velocity 

delta_Y = delta_Yl; 

delta_Y = delta_Y2; 

// Finger 1 

// Use finger 1 

// Use finger 2 

case 1: 

break; 

delta_Y = 0; 

break; 

// both forward-nothing 

// both backwards—Backwards 

velocity = 0 

I 
case 2: 

{ 
delta_Y = ((delta_Y 1 + delta_Y2) / 2);       // average 

movement of both fingers 
break; 

) 
case 3: // Y1 = 0-right turn 

{ 
deIta_Y = delta_Y2; // use finger 2 

velocity to find turning factor 
break; 

case 4: 
{ 

// Y2 = 0-Left turn 

delta_Y = delta_Yl; 
velocity to find turning factor 

break; 
) 

default: 
{ 

delta_Y = 0; 
velocity = 0 

// use finger 1 

II y 

) 

) 

return delta_Y; 

double get_delta_Xl(void) 
( 

delta_Xl = (first.x) - (old_first.x); 
return delta_Xl; 

) 

double get_delta_X2(void) 
{ 

delta_X2 = (second.x) - (old_second.x); 
return delta_X2; 

) 

double get_delta_Y 1 (void) 
{ 

delta_Yl = (first.y) - (old_first.y); 
return delta_Yl; 

1 

double get_delta_Y2(void) 
( 

delta_Y2 = (second.y) - (old_second.y); 
return delta_Y2; 

) 

// From Testbed software 
int get_values(void) 
{ 

int a = 0; 

for (a=0; a < 4; a++) 
f 

) 

// Read channel 0 at gain 1; store sample in Advalue 
if((nErr = K_ADRead(hDevl600. a, 0. &wADval)) != 0) 
{ 

putchar(7); 
printf("Error %X in K_ADRead operation.", nErr); 
exit(l); 

// Strip channel tag and display ADvalue 
// printf("A/D value from channel 0 is: %x\n", (wADval»4)&0xff0; 

Counts[a] = (wADval»4)&0xfff; 
data[a] = ((((double)Counts[a]) - 2048) * (20)) / (4096); 

} 
return 0; 

int initialize_A2D(void) 
< 

// Initialize the hardware and software 
if(( nErr = K_OpenDriver( "DAS1600", "dasl600.CFG", &hDrvl600)) != 0) 
( 

putchar(7); 
printf(" Error %X during K_OpenDriver", nErr); 
exit(nErr); 

) 

// Establish communication with the driver through a device handle 
if(( nErr = K_GetDevHandle(hDrvl600, 0, &hDevl600)) != 0) 
{ 

putchar(7); 
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) 

) 
return 0; 

printfCError 9fcX during K_GetDevHandle ", nErr); 
cxit(l); 

int c!ose_driver(void) 
{ 

// Close the Driver and Release All Resources 
K_CloseDri ver(hDrv 1600); 

return 0; 

a****************************************************************** 

****** 

Program: 

Hie: 

Function: 

Description: 

Author: 

Environment: 

Notes: 

Revisions: 

ADTracker 

finger.h 

Header for all finger walker code 

Brian Fitch (BF) 

Microsoft Visual C++ 5.0, 486/66 16mb RAM, Windows 95 
DOS 6.0. 

For use with finger.cpp 

1.00 3/10/98      (BF) Initial Release 

•/ 

#ifndef _FINGER_H_ 
«define _F1NGER_H_ 

//from a2d card header 
«define IDS_ERR_REGISTER_CLASS 1 
«define IDS_ERR_CREATE_WINDOW 
«define STARTBTN 101 
«define STOPBTN 102 
«define CLOSEBTN 118 
«define CONTBOX 124 
«define STARTCHANBOX 104 
«define STOPCHANBOX 105 
«define NUMSAMPLESBOX 108 
«define SAMPLERATEBOX 110 
«define DMASTATUSBOX 113 
«define DMATRANSFERBOX 114 
«define DATALISTBOX 119 
«define ID TIMER 1 

//char acString[I28];   /* variable to load resource strings 
//char 'szString = acString; 

//char 'szAppName = * 

//HWND hlnst; 
//HWND hWndMain; 

// class name for the window- 

LONG FAR PASCAL WndProc(HWND, U1NT, UINT, LONG); 
int nCwRegisterClasses(void); 
void CwUnRegisterClasses(void); 
void InitWindowHelds( HWND hwnd ); 
void InitDASDevice(void); 
void StartAcquiring(HWND hWnd) ; 
void StopAcquiring(HWND hWnd) ; 
void ProcessTimer(HWND hWnd); 
void ShowData(HWND hWnd) ; 
void ProcessError(short ErrNum) ; 

/* */ 
/* Function Prototypes      */ 
/* --*/ 

/* For Running */ 

int get_finger(void); 
int get_finger_debug(void); 

/* From A2D'/ 
int get_coordinates(void); 
//int a2d_coordinates(void); 
int lookup_coordinates(void); 
int lookup_coordinates2(void); 

// From Testbed software 
int get_values(void); 
int close_driver(void); 
int initialize_A2D(void); 

/• From Storpast.c */ 
int storejast(void); 
int store_multiple(void); 

/•From Vel2.c */ 
//double get_magnitude(void); 
//double get_direction(void); 
int get_mag_and_dir(void); 
double get_velocity_delta_X(int type): 
double get_velocity_delta_Y(int type); 
double get_delta_Xl(void); 
double get_delta_X2(void); 
double get_delta_Yl(void); 
double get_delta_Y2(void); 

•/ 
/* «define directives */ 
/*  .*/ 

/• From a2d.c •/ 
«define TRUE 1 
«define FALSE 0 
«define COL 101 
«define ROW 101 
«define SAVE 10 
«define TURNING I 
«define MAG MULTI 1 
«define DIR MULTI 1 
«define PI 3.141592654 

/* •/ 
/* Definitions of structures"/ 
/* and variables            */ 
/• •/ 

extern DWORD hDrvloOO; 
extern DWORD hDevloOO; 
extern short nErr; 
flag 
extern WORD wADval; 

extern int error; 

extern int Counts[4]; 
extern double data[4]; 

data[l] = yl 

data[2] == x2 

data(3] == y2 

extern double coords[4]; 

extern double old_coords[SAVE][4]; 

struct coord ( 
double x; 
double y; 

1; 
extern struct coord first; 
extern struct coord second; 
extern struct coord old_first; 
extern struct coord old_second; 

// Driver Handle 
// Device Handle 
// Function return error 

// Storage for A/D value 

// error = 0 :: no errors 
//error= 1 :: system error 

/* data[0] = xl 
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// Iookup[X][Y] 
extern struct coord lookup_l[ROW][COL] 
extern struct coord lookup_2[ROW][COL] 
extern struct coord lookup_Fl_X3[ll][11] 

extern double lookup_Fl_X[10I] 
extern double Iookup_Fl_Y[101] 
extern double lookup_F2_X[101] 
extern double lookup_F2_Y[101] 

extern double !ookup_Fl_X2[101]; 
extern double Iookup_Fl_Y2[101]; 

/• From Vel2.c •/ 
extern double forward_multiplier; 
extern double turning_multiplier; 
extern double magnitude; 
extern double direction; 
extern double deIta_X; 
extern double delta_Y; 

extern double deIta_Xl 
extern double delta_X2; 
extern double delta_Yl 
extern double delta Y2 

extern double turning_offset; 
//double magnitude_x = 0, magnitude_y = 0; 

extern int type; 

extern int DebugRunNumber; 
extern double DebugMotion; 

extern double TempVoltage[6][8][4]; 

#endif//    FINGER H 
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H Demo Code 

The following are the C++ listings for the ADTracker: ADTracker.cpp, 
ADTracker.h, ADTrackerDlg.cpp, ADTrackerDlg.h, ModifyConstantsDlg.cpp, 
ModifyConstantsDlg.h, resource.h, StdAfx.cpp, StdDfx.h, TrackerDlg.cpp, and 
TrackerDlg.h. 

'/ ADTracker.cpp : Defines the class behaviors for the application. 

^include "stdafx.h" 

^include "ADTracker.h" 

»include "ADTrackerDlg.h" 

«fdef_DEBUG 

»define new DEBUG NEW 

tfundef THIS_FILE 

italic char THIS_FILE[]: 
Sendif 

RLE 

•iiiiiiiiiiiiiiiiiiiiiiiiiwiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiiitiiiii 
'/ CADTrackerApp 

BEGIN_MESSAGE_MAP(CADTrackerApp, CWinApp) 
//({AFX_MSG_MAP(CADTrackerApp) 

// NOTE - the ClassWizard will add and remove mapping macros here. 
//    DO NOT EDIT what you see in these blocks of generated code! 

//))AFX_MSG 
ON_COMMAND(ID_HELP. CWinApp::OnHelp) 

END_MESSAGE_MAP() 

'llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
'/ CADTrackerApp construction 

( 
ZADTrackerApp::CADTrackerApp() 

// TODO: add construction code here, 
// Place all significant initialization in Initlnslance 

'lllllllllllllllllllltlllllllllllllllllllllllllllllllllllllllllllllllllllllll 
'/ The one and only CADTrackerApp object 

CADTrackerApp theApp; 

'llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
'/ CADTrackerApp initialization 

BOOL CADTrackerApp::InitInstance() 
{ 

// Standard initialization 
// If you are not using these features and wish to reduce the size 
// of your final executable, you should remove from the following 
// the specific initialization routines you do not need. 

// Call this when using MFC 
*ifdef_AFXDLL 

Enable3dControls()', 
in a shared DLL 
»else ..       . 

Enable3dControlsStatic();    // Call this when linking to MFC statically 
»endif 

dig = new CADTrackerDlgO; 
m_pMainWnd = dig; 
int nResponse = dlg->DoModal(); 
if (nResponse = IDOK) 
( 

// TODO: Place code here to handle^when the dialog is 
// dismissed with OK 

1 
else if (nResponse = IDCANCEL) 

// TODO: Place code here to handle when the dialog is 
// dismissed with Cancel 

) 

> 

delete dig; 
// Since the dialog has been closed, return FALSE so that we exit the 
// application, rather than start the application's message pump, 
return FALSE; 

CADTrackerDIg* CADTrackerApp::GetDlg() 
{ 

return theApp.dlg; 
1 

// ADTracker.h : main header file for the ADTracker application 

// 

#ifndef _AFXWIN_H_ 

#error include 'stdafx.h' before including this file for PCH 
#endif 

#include "resource.h" // main symbols 
#include "ADTrackerDlg.h" 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIWWIIIIIIIIIIIIWIIIIIIIIIIWWIIIIIIIIIII 
II CADTrackerApp: 
// See ADTracker.cpp for the implementation of this class 
// 

class CADTrackerApp : public CWinApp 
{ 
public: 

CADTrackerAppO; 

static CADTrackerDIg* GetDlgO; 

CADTrackerDIg 'dig; 
// Overrides 

// ClassWizard generated virtual function overrides 
//{{AFXJVIRTUAL(CADTrackerApp) 
public: 
virtual BOOL Initlnstance(); 
//))AFX_VIRTUAL 

// Implementation 

//{(AFX_MSG(CADTrackerApp) 

127 



here. 
// NOTE - the ClassWizard will add and remove member functions 

//    DO NOT EDIT what you see in these blocks of generated code ! 
//)}AFX_MSG 
DECLARE_MESSAGE_MAP() 

'/ ADTrackerDlg.cpp : implementation 
'/ 

»include "stdafx.h" 

»include "ADTracker.h" 

»include "ADTrackerDIg.h" 

»include <math.h> 

»include "finger.h" 

#ifdef_DEBUG 
»define new DEBUG_NEW 
»undef THIS_FILE 
static char THIS_F1LE[] = _FILE_; 
»endif 

U1NT MultiThreadRun( LPVOID pParam ); 
U1NT MultiThreadDebug( LPVOID pParam ); 

'///////////////l///l//l//l///////ll//ll///fl///ll/////l////l/l///////ll////l 
'/ CAboutDlg dialog used for App About 

:lass CAboutDlg : public CDialog 
( 
public: 

CAboutDlgO; 

'/ Dialog Data 
//{(AFX_DATA(CAboutDlg) 
enum { IDD = IDD_ABOUTBOX ); 
//))AFX_DATA 

// ClassWizard generated virtual function overrides 
//{(AFX_VIRTUAL(CAboutDlg) 
protected: 
virtual void DoDataExchange(CDataExchange« pDX);    // DDX/DDV 

support 
//) )AFX_VIRTUAL 

'/ Implementation 
protected: 

//({AFX_MSG(CAboutDlg) 
//))AFX_MSG 
DECLARE_MESSAGE_MAP() 

); 

CAboutDlg::CAboutDlg(): CDialog(CAboutDIg::IDD) 
{ 

//({AFX_DATA_INIT(CAboutDlg) 
//))AFX_DATA_INIT 

void CAboutDlg::DoDataExchange(CDataExchange* pDX) 

CDialog: .DoDataExchange(pDX); 
//{(AFX_DATA_MAP(CAboutDlg) 
//))AFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 
//{(AFX_MSG_MAP(CAboutDlg) 

// No message handlers 
//))AFX_MSG_MAP 

END_MESSAGE_MAP() 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIWIIIIIIIIIIIIIIllWIIIIIIIIIIilllHlllll 
II CADTrackerDlg dialog 

CADTrackerDlg::CADTrackerDlg(CWnd* pParent /*=NULL*/) 
: CDialog(CADTrackerDlg::IDD, pParent) 

//{{AFX_DATA_INIT(CADTrackerDlg) 
// NOTE: the ClassWizard will add member initialization here 

//|)AFX_DATA_INIT 
// Note that Loadlcon does not require a subsequent Destroylcon in Win32 
mjilcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); 
CONTINUE = TRUE; 
OriginX = 30; 
OriginY = 235; 
length = 320; 
MaxVal = 4.0; 
CompassOriginX = 260; 
CompassOriginY = 100; 
CompassLength = 100; 
CompassCenterX = CompassOriginX + CompassLength/2; 
CompassCenterY = CompassOriginY + CompassLength/2; 

sprintf(ErrorMessages[0], "Normal"); 
sprintf(ErrorMessages[l], "Nothing"); 
sprintf(ErrorMessages[2], "Reverse"); 
sprintf(ErrorMessages[3], "Right"); 
sprintf(ErrorMessages[4], "Left"); 
sprintf(ErrorMessages[5], "Error"); 
type= 1; 

ConstantsDlg = new ModifyConstantsDlg(this); 
ConstantsDlg->Create( IDD_DIALOG_CONSTANTS, this ); 

TrackDlg = new TrackerDlg(this); 
TrackDlg->Create( IDD_DIALOG_TRACKER. this ); 
TrackDlg->ShowWindow(SW_SHOW); 

TrackerScale = 1; 
TrackerCenterX = 250; 
TrackerCenterY = 250; 
TrackerLength = 250; 
NumPoints= I; 
StartNumPoint = 0; 
ThePoints[0].x = TrackerCenterX; 
ThePoints[0].y = TrackerCenterY; 

CADTrackerDlg::-CADTrackerDIg() 

delete ConstantsDlg; 
delete TrackDlg; 

} 

void CADTrackerDlg::DoDataExchange(CDataExchange* pDX) 

1 

CDialog::DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CADTrackerDlg) 

// NOTE: the ClassWizard will add DDX and DDV calls here 
//) )AFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CADTrackerDlg, CDialog) 
//((AFX_MSG_MAP(CADTrackerDIg) 
ON_WM_SYSCOMMAND() 
ON_WM_PAINT() 
ON_WM_QUERYDRAGICON() 
ON_BN_CLICKED(IDC_BUTTON_RUN, OnButtonRun) 
ON_BN_CLICKED(IDC_BUTTON_STOP,OnButtonStop) 
ON_BN_CLICKED(IDC_BUTTON_QUIT, OnBuftonQuit) 
ON_BN_CLICKED(IDC_BUTTON_PARAMETERS, OnButtonParameters) 
ON_BN_CLICKED(IDC_BUTTON_DIALOG, OnButtonDialog) 
//} }AFX_MSG_MAP 

END_MESSAGE_MAP() 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CADTrackerDlg message handlers 
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BOOL CADTrackerDIg::OnInitDialog() 
( 

CDialog::OnInitDialogO; 

// Add "About..." menu item to system menu. 

// IDM_ABOUTBOX must be in the system command range. 
ASSERT((IDM_ABOUTBOX & OxFFFO) = IDM_ABOUTBOX); 
ASSERT(IDM_ABOUTBOX < OxFOOO); 

CMenu* pSysMenu = GetSystemMenu(FALSE); 
CString strAboutMenu; 
strAboutMenu.LoadString(IDS_ABOUTBOX); 
if (IstrAboutMenu.IsEmptyO) 
{ 

pSysMenu->AppendMenu(MF_SEPARATOR); 
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX. 

strAboutMenu); 
) 

// Set the icon for this dialog. The framework does this automatically 
// when the application's main window is not a dialog 
Setlcon(m_hIcon, TRUE); // Set big icon 
Setlcon(m_hlcon. FALSE); // Set small icon 

// TODO: Add extra initialization here 

return TRUE; // return TRUE unless you set the focus to a control 
} 

void CADTrackerDlg::OnSysCommand(UINT nID. LPARAM lParam) 
{ 

if ((nID & OxFFFO) = lDM_ABOUTBOX) 
( 

CAboutDlg dlgAbout; 
dlgAbout.DoModalO; 

1 
else 
f 

CDialog::OnSysCommand(nID, lParam); 
I 

'/ If you add a minimize button to your dialog, you will need the code below 
'/ to draw the icon. For MFC applications using the document/view model, 
'/ this is automatically done for you by the framework. 

void CADTrackerDlg::OnPaint() 
( 

if (IsIconicO) 
{ 

CPainlDC dc(tliis); // device context for painting 

SendMessage(WM_lCONERASEBKGND, (WPARAM) 
dc.GetSafeHdcO. 0); 

// Center icon in client rectangle 
int cxlcon = GetSystemMetrics(SM_CXlCON); 
int cylcon = GetSystemMetrics(SM_CYICON); 
CRect rect; 
GetClientRect(&rect); 
int x = (rect.WidthO - cxlcon + 1) / 2; 
int y = (rect.HeightÖ - cylcon + 1) / 2; 

} 
else 
{ 

// Draw the icon 
dc.Draw!con(x, y, m_h!con); 

CPaintDC dc(this); // device context for painting 

int xl = (int)(first.x*(length/MaxVal)); 
int yl = (int)(length - first.y*(length/MaxVal)); 
int x2 = (int)(second.x*(length/MaxVal)); 
int y2 = (int)flength - second.y*(length/MaxVal)); 

CPoint Point l(OriginX + xl, OriginY + y 1); 
CPoint Point2(OriginX + x2, OriginY + y2); 
dc.FrameRect(&CRect(OriginX, OriginY, OriginX+length, 

OriginY+length), 
&CBrush(RGB(0,0,0))); 

//Draw Grid for twin points 
dc.FrameRect(&CRect((int)(OriginX), 

length/MaxVal), 

length), 

2'Iength/MaxVal)), 

(int)(OriginY + 

(int)(OriginX + 

(int)(OriginY + 

&CBrush(RGB(0,0.0))); 
dc.FrameRect(&CRect((int)(OriginX), 

(intXOriginY + 
2*length/MaxVal), 

(int)(OriginX + 
length), 

(int)(OriginY + 
3*length/MaxVal)), 

&CBrush(RGB(0.0.0))); 
dc.FrameRect(&CRect((int)(OriginX + length/MaxVal). 

(intXOriginY), 
(int)(OriginX + 

2*length/MaxVal), 
(intXOriginY + 

length)), 
&CBrush(RGB(0.0,0))); 

dc.FrameRect(&CRect((int)(OriginX + 2'length/MaxVal). 
(in(XOriginY), 
(int)(OriginX + 

3'length/MaxVal), 
(int)(OriginY + 

length)), 
&CBrush(RGB(0,0,0))); 

//Draw Compass 
dc.FrameRect(&CRect((int)(CompassOriginX). 

(intXCompassOriginY), 

(int)(CompassOriginX + CompassLength), 

(intXCompassOriginY + CompassLength)), 
&CBrush(RGB(0.0.0))); 

//Draw Axes 
dc.MovcTo(CompassCenterX - CompassLength/4, CompassCenterY); 
dc.LineTo(CompassCenterX + CompassLength/4. CompassCenterY); 
dc.MoveTo(CompassCenterX, CompassCenterY - CompassLength/4); 
dc.LineTo(CompassCenterX, CompassCenterY + CompassLength/4); 
dc.MoveTcK CompassCenterX. CompassCenterY); 

double PointX=0.0, PointY=0.0, 

PointX = (0.4)'CompassLength*cos(direction); 
PointY = (-0.4)*CompassLength*sin(direction); 

//TRACE("dir: %.41f Point: (%.41f, %,410 \n-, direcuon. PointX. 
PointY); 

//TRACECcenter: (%d, %d)   Point+: (%d. %d) \n", CompassCenterX. 
CompassCenterY, (((int)PointX)+CompassCcnterX), 
(((int)PointY)+CompassCenterY)); 

dc.LineTo( (int)(PointX + CompassCenterX), (int)(PointY + 
CompassCenterY)); 

dc.FiIlRect(&CRect( (intXPointX + CompassCenterX), (int)(PointY + 
CompassCenterY), (intXPointX + CompassCenterX+4), (int)(PointY + 
CompassCenterY+4)), 

&CBrush(RGB(255,0,0))); 

dc.FillRect(&CRect(Pointl, CPoint(Pointl + CPoint(4,4))), 
&CBmsh(RGB(255.0,0))); 

dc.RllRect(&CRect(Point2, CPoint(Point2 + CPoint(4,4))), 
&CBrush(RGB(255,0,0))); 

CDiaIog::OnPaint(); 
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'/ The system calls this to obtain the cursor to display while the user drags 
'/ the minimized window. 
HCURSOR CADTrackerDlg::OnQueryDragIcon() 
( 

return (HCURSOR) mjilcon; 

void CADTrackerDlg::OnButtonRun() 
{ 

1 

// TODO: Add your control notification handler code here 
CONTINUE = TRUE; 
AfxBeginThread(MultiThreadRun, NULL); 

UINT MultiThreadRun( LPVOID pParam ) 
( 

/♦CMyObject* pObject = (CMyObject*)pParam; 

if (pObject = NULL II 
!pObject->IsKindOf(RUNTIME_CLASS(CMyObject))) 

return -1; // illegal parameter 

CADTrackerDlg« TheDlg = CADTrackerApp::GetDlg(); 

delta_X=2.123456789; 
delta_Y=l. 123456789; 
direction=3.141592654; 
magnitude=4.0987654321; 
static intFIRSTTIME= 1; 

CStatic *X1 = (CStatic')TheDlg->GetDlgItem(IDC_STATIC_Xl); 
CSiatic *X2 = (CStatic*)TheDlg->GetDlgItem(IDC_STATlC_X2); 
CStatic «Yi =(CStatic')TneDlg->GetDlgUem(IDC_STATIC_Yl); 
CStatic *Y2 = (CSlatic*)ThcDlg->GctDlgIlem(IDC_STATIC_Y2); 
CStatic «Mag = (CStatic*)TheDlg->GelDlgltem(lDC_STATlC_MAG); 
CStatic *Dir = (CStatic*)ThcDIg->GetDlgIlem(IDC_STATIC_DIR); 
CStatic 'DeltaX = (CStatic*)TheDlg- 

>GetDlgItem(IDC_STATIC_DELTAX); 
CStatic *DcltaY = (CStatic*)TheDlg- 

>GetDlgItem(IDC_STATIC_DELTAY); 
CStatic •ErrorNumber = (CStatic')TheDlg- 

>GetDlgItem(IDC STATIC_NUMBER); 
CStatic •ErrorType = (CStauc'^eDlg-^etDlgltemdDC.STATlC.TYPE); 

char Xl_text[32]; 
char X2_text[32); 
char Yl_text[32]; 
char Y2_text[32); 
char Magjext[32]; 
char Dir_text[32J; 
char DcltaX_text!32]; 
char Delta Y_texl[32]; 
char StrErrNum[8); 

int count=0; 

while(TheDlg->CONTINUE) 
{ 

if(FIRSTTIME) 
{ 

F1RSTT1ME = 0; 
first.x = (double)3.0987654321; 
first.y = (double)4.0987654321; 
second.x = (double)5.0987654321; 
second.y = (double)6.0987654321; 

double MAX_RAND = 32565.0; 

(double)rand()/MAX_RAND*4.0; 
delta_X = (double)(rand()/MAX_RAND*4.0); 
delta_Y = (double)(rand()/MAX_RAND*4.0); 
direction = (double)(rand()/MAX_RAND*4.0); 
magnitude = (double)(10.0*rand()/MAX_RAND*4.0); 
first.x = (double)(rand()/MAX_RAND*4.0); 
first.y = (double)(rand()/MAX_RAND*4.0); 
second.x = (double)(rand()/MAX_RAND«4.0); 
second.y = (double)(rand()/MAX_RAND*4.0); 

//Tracker Dialog Drawing Stuff 
TheDlg->magnitude_x = magnitude • cos(direction); 
TheDlg->magnitude_y = magnitude * sin(direction); 

// TRACE("magnitude_x,y = (%lf,%lf)\n", TheDlg->magnitude_x, 
TheDlg->magnitude_y); 

int NewPt = TheDlg->NumPoints % 2048; 
int PrcvPt = ThcDlg->NumPoints % 2048; 
if(NewPt = 0) 

PrevPt = 2047; 
else 

PrevPt = NewPt - 1; 

TheDlg->ThePoints[NewPt].x = (int)(TheDlg->ThePoints[PrevPt].x + 
TheDlg->magnitude_x); 

TheDlg->ThePoints[NewPt].y = (int)(TheDlg->ThePoints[PrevPt].y + 
TheDlg->magnitude_y); 

TRACE("NewPt=%d. (%d.%d)\n", NewPt, TheDlg- 
>ThePoints[NewPt].x, TheDlg->ThePoints[NewPt].y); 

ThcDlg->NumPoints++; 
if(TheDlg->NumPoints <= 2048) 

TheDlg->StartN umPoint = 0; 
else 

TheDlg->StartNumPoint = (NewPt+l)%2048; 

while(abs(TheDlg->ThePoints[(TheDlg->NumPoints- 
D%2048].x/TheDlg->TrackerScale) > TheDlg->TrackerCenterX + TheDlg- 
>TrackerLength II 

abs(TheDlg->ThePoints((TheDlg->NumPoints- 
l)%2048].y/TheDlg->TrackerScale) > TheDlg->TrackerCenterY + TheDlg- 
>TrackerLength) 

( 
TheDlg->TrackerScale *= 2; 

I 

TRACECTrackerScale=%d\n". TheDlg->TrackerScalc); 
if(FALSE)//(get_finger()) 
( 

TheDlg->MessageBox("I Failed on Run!\nExiting..."). 
//OnOK(); 

I 
else //Set all the Text Areas based on the new values 
( 

TRACECRun Number %d\n". count++); 

sprintf(StrErrNum, "%d", type); 
sprintf(Xl_tcxt, "%.3ir. first.x); 
sprintf(X2_text. "%.3ir, second.x); 
sprintf(Yl_text. "%.31f. first.y); 
sprintf(Y2_tcxt. "9b.3ir, second.y); 
sprintf(Mag_text, "%.4ir, magnitude); 
sprintf(Dir_text, "%.41f, direction); 
sprintf(DeltaX_text, "%.4ir. delta_X); 
sprintf(Dc!taY_text, -%.4ir. delta_Y); 

X1 ->SctWindowText(X l_text); 
X2->SctWindowText(X2_text); 
Y1 ->SetWindowText(Y 1 _text); 
Y2->SetWindowTcxt(Y2_text); 
Mag->SetWindowText(Mag_text); 
Dir->SetWindowText(Dir_text); 
DeltaX->SctWindo wText(DeltaX_text); 
DeltaY->SetWindowText(DeltaY_text); 
ErrorNumber->SetWindowText(StrErrNum); 
ErrorType->SetWindowText(TheDlg- 

>ErrorMessages[type]); 

ThcDlg->InvalidateRect(&CRect(TheDlg->OriginX, 
TheDlg->OriginY, TheDlg->OriginX+TheDIg->length, TheDlg- 
>OriginY+TheDlg->Iength)); 

TheDlg->InvalidateRect(&CRect(TheDlg- 
>CompassOriginX, TheDlg->CompassOriginY, TheDlg- 
>CompassOriginX+TheDlg->CompassLength, TheDlg- 
>CompassOriginY+TheDlg->CompassLength)); 

TheDlg->UpdateWindow(); 
TheDlg->TrackDig->RedrawWindow(); 
//TheDlg->RedrawWindowO; 

) 
Slecp(lOOO); 
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) 
return 0; // thread completed successfully 

void CADTrackerDlg::OnButtonStopO 

// TODO: Add your control notification handler code here 
CONTINUE = FALSE; 

void CADTrackerDIg::OnButtonQuit() 

// TODO: Add your control notification handler code here 
OnOKQ; 

void CADTrackerDIg::OnButtonParameters() 

// TODO: Add your control notification handler code here 
ConstantsDlg->ShowWindow(SW_SHOW); 

oid CADTrackerDlg::OnBurtonDiaIog() 

// TODO: Add your control notification handler code here 
CONTINUE = TRUE; 
AfxBeginThread(MuItiThreadDebug, NULL); 

U1NT MultiThreadDebug( LPVOID pParam ) 

/•CMyObject* pObject = (CMyObject*)pParam; 

if (pObject = NULL II 
!PObject->IsKindOf(RUNTIME_CLASS(CMyObject))) 

return -1; // illegal parameter 
•/ 

CADTrackerDIg* TheDlg = CADTrackerApp::GetDlg(); 

delta_X=2.123456789; 
delta Y= 1.123456789; 
direction=(3.141592654/2); 
magnitude=4.0987654321; 
static int FIRSTTIME = I; 

CStatic *X1 =(CStatic')TheDIg->GetDlgItem(IDC_STATIC_Xl); 
CSlatic *X2 = (CStalic')TheDlg->GctDlgItem(IDC_STATIC_X2); 
CStatic *Y1 = (CStatic')TheDlg->GetDlgItem([DC_STATIC_Yl); 
CStatic *Y2 = (CStatic*)TheDlg->GetDlgItem(IDC_STATIC_Y2); 
CStatic 'Mag = (CStatic*)TheDlg->GetDIgItem(IDC_STATIC_MAG); 
CStatic "Dir = (CStatic')TheDlg->GetDlgItem(IDC_STATlC_DIR); 
CStatic 'DeliaX = (CS*.atic*)TheDig- 

>GetDIgItem(IDC STATIC_DELTAX); 
CStatic -DeltaY = (CStatic*)TheDIg- 

>GetDlgItem(IDC_STATIC_DELTAY); 
CStatic 'ErrorNumber = (CStatic')TheDlg- 

>GetDlgItem(IDC_STATIC_NUMBER); 
CStatic *ErrorType = (CStatic*)TheDlg->GetDIgItem(IDC_STATIC_TYPE); 

char Xl_text[32]; 
char X2_text[32]; 
char Yl_text[32]; 
char Y2_text[32]; 
char Mag_text[32]; 
char Dir_text[32]; 
char DeltaX_text[32]; 
char Delta Y_text[32]; 
char StrErrNum[8]; 

int count=0; 

while(TheDlg->CONTINUE) 
{ 

if(FIRSTTIME) 
{ 

FIRSTTIME = 0; 
first.x = (double)2.0; 
first.y = (double)2.0; 

) 

second.x = (double)40: 
second.y = (double)2.0; 

// double MAX_RAND = 32565.0; 

// (double)rand()/MAX_RAND*4.0; 
// TheDIg->dclta_velocity_X = (double)(rand()/MAX_RAND»4.0); 
// TheDlg->delta_veIocity_Y = (double)(rarid()/MAX_RAND*4.0); 
// TheDIg-xlirection = (doubIe)(rand()/MAX_RAND*4.0); 
// TheDIg->magnitude = (doubleXlO.OVandO/MAX.RANDM.O); 
// TheDlg->first.x = (double)(rand()/MAX_RAND'4.0); 
// TheDlg->first.y = (doubleXrand()/MAX_RANDM.O); 
// TheDIg->second.x = (double)(rand()/MAX_RAND*4.0); 
// TheDlg->second.y = (double)(rand()/MAX_RAND'4.0); 

//Tracker Dialog Drawing Stuff 
TheDIg->magnitude_x = magnitude * cos(direction); 
TheDlg->magnitude_y = magnitude * sin(dircction); 

// TRACE("mag,dir: (%.41f, %.41f)\n". magnitude, direction); 
TRACE("magnitude_x,y = (%.41f,%.41f)\n\ TheDlg->magnitude_x, 

TheDlg->magnitude_y); 

int NewPt = TheDlg->NumPoints % 2048; 
int PrevPt = TheDIg->NumPoints % 2048; 
if(NewPt = 0) 

PrevPt = 2047; 
else 

PrevPt = NewPt - 1; 

TheDIg->ThePoints[NewPt].x = (int)((doublc)fTheDlg- 
>ThePoints[PrcvPt].x) + (TheDlg->magniludc_x) + 0.5); 

TheDlg->ThePoints[NewPt].y = (int)((double)(TheDlg- 
>ThePoints[PrevPt].y) - (TheDlg->magnitude_y) + 0.5); 

// TRACEC(int)mag/dir= (%d. %d)\ ((int)(TheDlg->magnilude_x)), 
((int)(TheDlg->magnitude_y))); 

TRACEC01dPoint(%d, %d) + (%.41f.%.41f) = NewPoint(%d,%d)\n-. 
TheDlg->ThePoints[PrevPt].x. TheDlg->ThePoints[PrevPt].y. TheDlg- 
>magnitude_x, TheDlg->magnitude_y, TheDIg->ThePoints[NcwPt].x. TheDlg- 
>ThePoints[NewPt].y); 

TRACE("NP= (9bd, %d)\n-. ((intKTheDlg->ThePoints[PrevPt].x + 
(TheDlg->magnitude_x))), ((int)(ThcDlg->ThcPoints[PrevPt].y + (TheDlg- 
>magnitude_y)))); 

//TRACE("NP= (%d. %d)\n\ ((int)(TheDlg->ThePoints[PrevPt].x + 
(TheDIg->magnitude_x))), ((int)(ThcDlg->ThePoints[PrevPt].y + (TheDlg- 
>magnitude_y)))); 

//TRACEC01dPt=*d. (9bd.*d) NewPt=%d, (%d,%d)\n", PrevPt. 
TheDlg->ThcPoints[PrcvPt].x, TheDlg->ThePoints[PrcvPt].y. NewPt. TheDlg- 
>ThePoints[NewPi].x, TheDlg->ThePoints[NewPt].y ); 

TheDlg->NumPoints++; 
if(TheDlg->NumPoints <= 2048) 

TheDlg->StartNumPoint = 0; 
else 

TheDlg->StartNumPoint = (NewPt+l)%2048; 

while(abs(TheDlg->ThePoints[(TheDlg->NumPoints- 
l)%2048).x/TheDlg->TrackerScale) > TheDlg->TrackerCenterX + TheDlg- 
>TrackerLength II 

abs(TheDlg->ThePoints[(TheDlg->NumPoints- 
l)%2048].y/TheDIg->TrackerScale) > TheDlg->TrackerCenterY + TheDlg- 
>TrackerLength) 

TheDlg->TrackerScale •= 2; 
} 

TRACE(TrackerScale==%d\n", TheDlg->TrackerScale); 
if(get_finger_debug()) 

TheDlg->MessageBox("I Failed on Run!\nExiting..."); 
//OnOKO; 

else //Set all the Text Areas based on the new values 

//TRACEfRun Number %d\n", count++); 
-■    //TRACE("new:,   (%.3f. %.30 (%.3f,.%.3f) ", first.x, 

first.y, old_first.x, old_first.y); 

sprintf(StrErrNum, "%d", type); 
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sprintf(XI_text, "%.31f\ firstx); 
sprintf(X2_text, "%.3ir, sccond.x); 
sprintf(Yl_text, "%.31f", first.y); 
sprintf(Y2_text, "%.31f\ second.y); 
sprintf(Mag_text, "%.4ir, magnitude); 
sprintf(Dir_text, "%.41f", direction); 
sprintf(DcltaX_tcxt, "%.4lf", de!ta_X); 
sprintf(DeltaY_text, "%.41f", delta. Y); 

X1 ->SetWindowText(X l_text); 
X2->SetWindowText(X2_text); 
Y1 ->SetWindowText(Y l_text); 
Y2->SetWindowText(Y2_text); 
Mag->SctWindowTcxt(Mag_text); 
Dir->SetWindowTcxt(Dir_text); 
DeltaX->SctWindowText(DeItaX_tcxt); 
Delta Y->SetWindowText(DeltaY_text); 
ErTorNumber->SetWindowText(StrEiTNum); 
ErrorType->SetWindowText(TheDlg- 

>ErrorMessages[type]); 

TheDlg->InvaIidateRect(&CRect(TheDIg->OriginX 
rheDlg->OnginY, TheDIg->OriginX+TheDlg->lengtht TheDle- 
>OriginY+TheDIg->Iength)); 

TheDlg->InvalidateRect(&CRect(TheDlg- 
>CompassOriginX, TheDlg->CompassOriginY, TheDlg- 
>CompassOriginX+TheDIg->CompassLength, TheDIg- 
>CompassOriginY+TheDlg->CompassLength)); 

TheDIg->UpdateWindow(); 
TheDlg->TrackDlg->RedrawWindow()- 
//TheDlg->RedrawWindow(); 

Sleep(1000); 

return 0; // thread completed successfully 

'/ ADTrackerDlg.h : header file 

'/ 

»ifndef _ADTRACKERDLG_H_ 

»define _ADTRACKERDLG_H_ 

'IllllllllllllllllltllllllllllllllllllllllllllllWIIIIIIIIIIIIIlllllllllim 

'/ CADTrackerDIg dialog 

»include "ModifyConstantsDlg.h" 
»include "TrackerDlg.h" 

;Iass TrackerDlg; 

:lass CADTrackerDIg : public CDialog 

'/ Construction 
public: 

CADTrackerDlg(CWnd' pParent = NULL); 
-CADTrackerDIgO; 
// standard destructor 

BOOL CONTINUE; 
'*    struct coord { 

double x; 
double y; 

} first, second; 
double delta_veIocity_X; 
double delta_velocity_Y; 
double delta_X; 
double delta_Y; 
double direction; 
double magnitude; 

*/   double magnitude_x; 

// standard constructor 

// DDX/DDV 

double magnitude_y; 
int OriginX; 
int Origin Y; 
int CompassOriginX; 
int CompassOriginY; 
int CornpassCenterX; 
int CompassCenterY; 
int CompassLength; 
int length; 
double MaxVal; 
//int type; 
char ErrorMessages[8][16]; 
ModifyConstantsDIg* ConstantsDlg; 
TrackerDlg* TrackDlg; 
CPoint ThePoints[2048]; 
int NumPoints; 
int StartNumPoint; 
int TrackerCcnterX; 
int TrackerCenterY; 
int TrackerLength; 
int TrackerScale; 

// Dialog Data 
//({AFX_DATA(CADTrackerDlg) 
enum { IDD = IDD_ADTRACKER_DIALOG ); 

// NOTE: the ClassWizard will add data members here 
//))AFX_DATA 

// Class Wizard generated virtual function overrides 
//{{AFX_VlRTUAL(CADTrackerDlg) 
protected: 
virtual void DoDataExchange(CDataExchange* pDX); 

support 
//))AFX_VIRTUAL 

// Implementation 
protected: 

HICON mjilcon; 

// Generated message map functions 
//((AFX_MSG(CADTrackerDlg) 
virtual BOOL OnlnitDialogO; 
afx_msg void OnSysCommand(UINT nID, LPARAM IParam); 
afx_msg void OnPaint(); 
afx_msg HCURSOR OnQueryDragIcon(); 
afx_msg void OnButtonRun(); 
afx_msg void OnButtonStopO; 
afx_msg void OnButtonQuitO; 
afx_msg void OnButtonParametersO; 
afx_msg void OnButtonDialogO; 
//|)AFX_MSG 
DECLARE_MESSAGE_MAP() 

#endif // _ADTRACKERDLG_H 

// ModifyConstantsDIg.cpp : implementation file 

// 

#include "stdafx.h" 

«include "ADTracker.h" 

«include "ModifyConstantsDIg.h" 

«include "finger.h" 

#ifdef_DEBUG 

«define new DEBUG_NEW 

#undefTHIS_HLE 
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rtatic char THIS_FILE[] = _FILE_; 
Kendif 

iWllllllllllllllllllllllllllillllllllllllllllllllllllllllllllllllllllllllll 
'I ModifyConstantsDlg dialog 

ModifyConstantsDlg::ModifyConstantsDlg(CWnd* pParent /*=NULL»/) 
: CDiaIog(ModifyConstantsDlg::IDD, pParent) 

( 
//((AFXJDATAJNIT(ModifyConstantsDlg) 

// NOTE: the ClassWizard will add member initialization here 
//))AFX_DATA_INIT 
tuming_multiplier = 1.0; 
forward_multiplier = 10.0; 
DebugMotion=0.0; 

void ModifyConstantsDIg::DoDataExchange(CDataExchange* pDX) 
( 

CDiaIog::DoDataExchange(pDX); 
//({AFX_DATA_MAP(ModifyConstantsDlg) 

// NOTE: the ClassWizard will add DDX and DDV calls here 
//||AFX_DATA_MAP 

BEGIN_MESSAGE_MAP(ModifyConstantsDlg, CDialog) 
//({AFX_MSG_MAP(ModifyConstantsD!g) 
ON_WM_SHOWWINDOW() 
//|)AFX MSG_MAP 

END_MESSÄGE_MAP() 

>IIWIIIIIIIIIIIIWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIWIIIIWII1IIIIIIII 
'I ModifyConstantsDlg message handlers 

void ModifyConstantsDlg::OnShowWindow(BOOL bShow. UINT nStatus) 
( 

I 

CDialog::OnShowWindow(bShow, nStatus); 

// TODO: Add your message handler code here 
CEdif EditTuming = (CEdif )GetDlgItem(IDC_EDIT_TURNING); 
CEdif EditMagnitude = (CEdif )GetDlgItem(IDC_EDrT_MAGNlTUDE); 
CEdif EditMotion = (CEdif)GetDlgIlem(IDC_EDIT_DEBUG_MOT10N); 

char SlrTuming[ 16]; 
char StrMagnitude[16); 
char StrMotion[16]; 

sprintf(StrTuming. "%.2ir, tuming_multiplier); 
sprintf(StrMagnitude. "%.2!f\ forward_multip!ier); 
sprintf(StrMotion, "%.2lf", DebugMotion); 

EditTuming->SetWindowText(StrTuming); 
EditMagnitude->SeiWindowText(SlrMagnitude); 
EditMotion->SetWindowText(StrMoiion); 

void ModifyConstantsDlg::OnOK() 
( 

// TODO: Add extra validation here 
CEdif EditTuming = (CEdif )GetDlgItem(IDC_EDlT_TURNlNG); 
CEdif EditMagnitude = (CEdif )GetDlghem(IDC_ED[T_MAGNlTUDE); 
CEdif EditMotion = (CEdif )GetDlgItem(IDC_EDIT_DEBUG_MOTION); 

char StrTuming[32]; 
char StrMagnitude[32]; 
char StrMotion[32]; 

EditTuming->GetWindowText(StrTumingI 31); 
EditMagnitude->GetWindowText(StrMagnitude, 31); 
EditMotion->GetWindowText(StrMotion, 31); 

turning_mulliplier = strtod(StrTuming, NULL); 
forward_multiplier = strtod(StrMagnitude, NULL); 
DebugMotion = strtod(StrMotion, NULL); 

CDialog: :OnOK(); 

void ModifyConstantsDlg::OnCancelO 
{ 

// TODO: Add extra cleanup here 

CDiaIog::OnCanceI(); 

#if 
!defined(AFX_MODIFYCONSTANTSDLG_H_44525C02_91A3_llDl_8C94_ 
0O4OO5368232_INCLUDEDJ 

#define 
AFX_MOD1FYCONSTANTSDLG_H_44525C02_91A3_11D1_8C94_00400536 
8232_1NCLUDED_ 

#if_MSC_VER>= 1000 
#pragma once 
#endif//_MSC_VER>= 1000 
// ModifyConstantsDIg.h : header file 
// 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
II ModifyConstantsDlg dialog 

class ModifyConstantsDlg : public CDialog 
{ 
// Construction 
public: 

ModifyConstantsDlg(CWnd* pParent = NULL);   // standard constructor 

// Dialog Data 
//{{AFX_DATA(ModifyConstantsDIg) 
enum { IDD = lDD_DIALOG_CONSTANTS }; 

// NOTE: the ClassWizard will add data members here 
//})AFX_DATA 

/*    double tuming_multiplier; 
double forward^multiplier; 
double DebugMotion; 

*/ 
// Overrides 

// ClassWizard generated virtual function overrides 
//{(AFXJVIRTUALTModifyConstantsDlg) 
protected: 
virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV 

support 
//])AFX_VIRTUAL 

// Implementation 
protected: 

// Generated message map functions 
//{{AFX_MSG(ModifyConstanlsDlg) 
virtual void OnOKO; 
virtual void OnCancel(); 
afx_msg void OnShowWindow(BOOL bShow, UINT nStatus); 
//)}AFX_MSG 
DECLARE_MESSAGE_MAP() 

//({AFX_INSERT_LOCATION () 
// Microsoft Developer Studio will insert additional declarations immediately 
before the previous line. 

#cndif// 
!defined(AFX_MODIFYCONSTANTSDLG_H_44525C02_91 A3_ 11D1 _8C94_ 
004005368232_INCLUDED_) 

//{(NO_DEPENDENCIES)} 

// Microsoft Developer Studio generated include file. 

// Used by ADTracker.rc 
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»define IDM_ABOUTBOX 0x0010 

»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 
»define 

IDD_ABOUTBOX 100 
IDS_ABOUTBOX 101 
IDD_ADTRACK£R_DIALOG 102 
IDR_MAINFRAME 128 
IDR_MENU1 129 
IDD_DIALOG_CONSTANTS 130 
IDD_DIALOG_TR ACKER 131 
IDC_BUTTON_RUN 1000 
IDC_BUTTON_STEP 1001 
IDC_BUTTON_DIALOG 1001 
IDC_BUTTON_STOP 1002 
IDC_BUTTON_PARAMETERS 1003 
IDC_BUTTON_QUIT 1004 
IDC_STATIC_COORDINATES 1005 
IDC_STATIC_VELOCITY 1006 
IDC_STATIC_X2 1007 
IDC_STATIC_X1 1008 
IDC_STATIC_Y1 1009 
IDC_STAT1C_Y2 1010 
IDC_STATIC_MAG 1013 
IDC_STAT1C_DIR 1014 
IDC_STATIC_DELTAY 1015 
IDC_STAT1C_DELTAX 1016 
IDC_STAT1C_TYPE 1017 
IDC_STATIC_NUMBER 1018 
IDC_STAT1C_SPEC_INST 1019 
IDC_EDiT_TURNlNG 1020 
IDC STAT1C_TURN_MULT 1021 
IDC_STATIC_MAG_MULT 1022 
IDC_EDrT_MAGNrrUDE 1023 
IDC_STATlC_Debugl 1024 
IDC_EDIT_DEBUG_MOTION 1025 
ID_FILE_RUN 
ID_F1LE_ST0P 

32771 
32772 

'/ Next default values for new objects 
'/ 
»ifdef APSTUDIOJNVOKED 
»ifndef APSTUDIO_READONLY_SYMBOLS 
»define _APS_NEXT_RESOURCE_VALUE 
»define _APS_NEXT_COMMAND VALUE 
«define _APS_NEXT CONTROL_VALUE 
«define _APS_NEXT_SYMED_VALUE 
«endif 
«endif 
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1025 
101 

'/ stdafx.cpp : source file that includes just the standard includes 

'/    ADTracker.pch will be the pre-compiled header 

'/    stdafx.obj will contain the pre-compiled type information 

»include "stdafx.h" 

'/ stdafx.h : include file for standard system include files, 

'/ or project specific include files that are used frequently, but 

'/      are changed infrequently 

»define VC_EXTRALEAN 
Windows headers 

// Exclude rarely-used stuff from 

»include <afxwin.h>        // MFC core and standard components 
»include <afxext.h>        // MFC extensions 
»ifndef _AFX_NO_AFXCMN_SUPPORT 

/»include <afxcmn.h> 
Common Controls 
#endif//  AFX_NO_AFXCMN_SUPPORT 

// MFC support for Windows 95 

// TrackerDIg.cpp : implementation file 

// 

#include "stdafx.h" 

#include "ADTrackcr.h" 

#include "TrackerDlg.h" 

#ifdef _DEBUG 

«define new DEBUG_NEW 

#undefTHIS_FILE 

static char THIS_F1LE[] = _FILE_; 
#endif 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II TrackcrDlg dialog 

TrackerDlg::TrackerDlg(CWnd* pParent /*=NULL*/) 
: CDialog(TrackerDlg::lDD. pParent) 

{ 
//{{AFX_DATA_INIT(TrackerD!g) 

// NOTE: the ClassWizard will add member initialization here 
//))AFX_DATA_INIT 
Parent = (CADTrackerDlg')pParcnt; 

) 

void TrackerDlg::DoDataExchange(CDataExchange* pDX) 
{ 

CDialog::DoDataExchange(pDX); 
//{(AFX_DATA_MAP(TrackerDlg) 

// NOTE: the ClassWizard will add DDX and DDV calls here 
//)(AFX_DATA_MAP 

BEGlN_MESSAGE_MAP(TrackerDlg. CDialog) 
//{{AFX_MSG_MAP(TrackerDlg) 
ON WM_PAINT() 
//))XFX_MSG_MAP 

END_MESSAGE_MAP() 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II TrackerDlg message handlers 

void TrackerDlg::OnPaint() 
( 

CPaintDC dc(this); // device context for painting 

// TODO: Add your message handler code here 
int i=0; 
dc.MoveTo(Parent->TrackerCenterX, Parent->TrackerCenterY); 
if(Parent->NumPoints > 1) 

for(i=Parent->StartNumPoint; i < Parent->StartNumPoint + min(2048, 
Parent->NumPoints); i++) 

TRACE("Drawing from (%d,%d) to (%d.%d)\n", 
dc.GetCurrentPositionO.x, dc.GctCurrentPositionO.y, Parent- 
>ThePoints[i%2048].x/Parent->TrackerScale, Parent- 
>ThePoints[i%2048).y/Parent->TrackerScale); 

dc.LineTo(Parent->ThePoints[i%2048].x/Parent- 
>TrackerScale, /*Parent->TrackerLength - */Parent- 
>ThePoints[i%2048].y/Parent->TrackerScale); 
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// Do not call CDialog::OnPaint() for painting messages 

'defined(AFX_TR ACKERDLG_H_44525C06_91 A3_ 11D1 _8C94_00400536823 
2_INCLUDEDJ 

»define 
AFX_TRACKERDLG_H_44525C06_91 A3_l 1 D1_8C94_004005368232_1NCL 
UDED_ 

«f_MSC_VER>=1000 

»pragma once 

»endif //_MSC_VER >= 1000 
'/ TrackerDlg.h : header file 
'/ 

»include "ADTrackerDIg.h" 
:lass CADTrackerDlg; 

illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
'/ TrackerDlg dialog 

;Iass TrackerDlg : public CDialog 
{ 
'/ Construction 
public: 

TrackerDlg(CWnd' pParent = NULL);   // standard constructor 

// DDX/DDV 

// Dialog Data 
//({AFX_DATA(TrackerDlg) 
enum { IDD = IDD_DIALOG_TRACKER }; 

// NOTE: the ClassWizard will add data members here 
//) )AFX_DATA 

CADTrackerDlg 'Parent; 

// Overrides 
// ClassWizard generated virtual function overrides 
//((AFX_VIRTUAL(TrackerDlg) 
protected: 
virtual void DoDataExchange(CDataExchange' pDX); 

support 
//1)AFX_VIRTUAL 

// Implementation 
protected: 

// Generated message map functions 
//{(AFX_MSG(TrackerDlg) 
afx_msg void OnPaint(); 
//))AFX_MSG 
DECLARE_MESSAGE_MAP() 

}; 

//{{AFX_INSERT_LOCATION}} 
// Microsoft Developer Studio will insert additional declarations immediately 
before the previous line. 

#endif// 
!defined(AFX_TRACKERDLG_H_44525C06_91 A3_l 1D 1_8C94_004 00536823 
2_INCLUDEDJ 
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